Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963202339> ?p ?o ?g. }
- W2963202339 abstract "We propose a recurrent neural network architecture with a Forward Kinematics layer and cycle consistency based adversarial training objective for unsupervised motion retargetting. Our network captures the high-level properties of an input motion by the forward kinematics layer, and adapts them to a target character with different skeleton bone lengths (e.g., shorter, longer arms etc.). Collecting paired motion training sequences from different characters is expensive. Instead, our network utilizes cycle consistency to learn to solve the Inverse Kinematics problem in an unsupervised manner. Our method works online, i.e., it adapts the motion sequence on-the-fly as new frames are received. In our experiments, we use the Mixamo animation data1 to test our method for a variety of motions and characters and achieve state-of-the-art results. We also demonstrate motion retargetting from monocular human videos to 3D characters using an off-the-shelf 3D pose estimator." @default.
- W2963202339 created "2019-07-30" @default.
- W2963202339 creator A5009299466 @default.
- W2963202339 creator A5044145078 @default.
- W2963202339 creator A5064419280 @default.
- W2963202339 creator A5068985412 @default.
- W2963202339 date "2018-06-01" @default.
- W2963202339 modified "2023-10-16" @default.
- W2963202339 title "Neural Kinematic Networks for Unsupervised Motion Retargetting" @default.
- W2963202339 cites W1735317348 @default.
- W2963202339 cites W1915949830 @default.
- W2963202339 cites W2017913224 @default.
- W2963202339 cites W2032893275 @default.
- W2963202339 cites W2049077434 @default.
- W2963202339 cites W2053886812 @default.
- W2963202339 cites W2099628199 @default.
- W2963202339 cites W2101032778 @default.
- W2963202339 cites W2112539290 @default.
- W2963202339 cites W2124609748 @default.
- W2963202339 cites W2137267908 @default.
- W2963202339 cites W2143612262 @default.
- W2963202339 cites W2150913887 @default.
- W2963202339 cites W2166302491 @default.
- W2963202339 cites W2293741035 @default.
- W2963202339 cites W2469134594 @default.
- W2963202339 cites W2471723840 @default.
- W2963202339 cites W2474531669 @default.
- W2963202339 cites W2550821151 @default.
- W2963202339 cites W2594167370 @default.
- W2963202339 cites W2611932403 @default.
- W2963202339 cites W2612706635 @default.
- W2963202339 cites W2762522875 @default.
- W2963202339 cites W2962793481 @default.
- W2963202339 cites W2962818260 @default.
- W2963202339 cites W2963165299 @default.
- W2963202339 cites W2963739349 @default.
- W2963202339 cites W2964203186 @default.
- W2963202339 cites W4214813851 @default.
- W2963202339 cites W4254276231 @default.
- W2963202339 doi "https://doi.org/10.1109/cvpr.2018.00901" @default.
- W2963202339 hasPublicationYear "2018" @default.
- W2963202339 type Work @default.
- W2963202339 sameAs 2963202339 @default.
- W2963202339 citedByCount "133" @default.
- W2963202339 countsByYear W29632023392018 @default.
- W2963202339 countsByYear W29632023392019 @default.
- W2963202339 countsByYear W29632023392020 @default.
- W2963202339 countsByYear W29632023392021 @default.
- W2963202339 countsByYear W29632023392022 @default.
- W2963202339 countsByYear W29632023392023 @default.
- W2963202339 crossrefType "proceedings-article" @default.
- W2963202339 hasAuthorship W2963202339A5009299466 @default.
- W2963202339 hasAuthorship W2963202339A5044145078 @default.
- W2963202339 hasAuthorship W2963202339A5064419280 @default.
- W2963202339 hasAuthorship W2963202339A5068985412 @default.
- W2963202339 hasBestOaLocation W29632023392 @default.
- W2963202339 hasConcept C10161872 @default.
- W2963202339 hasConcept C104114177 @default.
- W2963202339 hasConcept C121332964 @default.
- W2963202339 hasConcept C121684516 @default.
- W2963202339 hasConcept C153180895 @default.
- W2963202339 hasConcept C154945302 @default.
- W2963202339 hasConcept C160970401 @default.
- W2963202339 hasConcept C17816587 @default.
- W2963202339 hasConcept C2776436953 @default.
- W2963202339 hasConcept C31972630 @default.
- W2963202339 hasConcept C39920418 @default.
- W2963202339 hasConcept C41008148 @default.
- W2963202339 hasConcept C48007421 @default.
- W2963202339 hasConcept C502989409 @default.
- W2963202339 hasConcept C50644808 @default.
- W2963202339 hasConcept C74650414 @default.
- W2963202339 hasConcept C90509273 @default.
- W2963202339 hasConceptScore W2963202339C10161872 @default.
- W2963202339 hasConceptScore W2963202339C104114177 @default.
- W2963202339 hasConceptScore W2963202339C121332964 @default.
- W2963202339 hasConceptScore W2963202339C121684516 @default.
- W2963202339 hasConceptScore W2963202339C153180895 @default.
- W2963202339 hasConceptScore W2963202339C154945302 @default.
- W2963202339 hasConceptScore W2963202339C160970401 @default.
- W2963202339 hasConceptScore W2963202339C17816587 @default.
- W2963202339 hasConceptScore W2963202339C2776436953 @default.
- W2963202339 hasConceptScore W2963202339C31972630 @default.
- W2963202339 hasConceptScore W2963202339C39920418 @default.
- W2963202339 hasConceptScore W2963202339C41008148 @default.
- W2963202339 hasConceptScore W2963202339C48007421 @default.
- W2963202339 hasConceptScore W2963202339C502989409 @default.
- W2963202339 hasConceptScore W2963202339C50644808 @default.
- W2963202339 hasConceptScore W2963202339C74650414 @default.
- W2963202339 hasConceptScore W2963202339C90509273 @default.
- W2963202339 hasLocation W29632023391 @default.
- W2963202339 hasLocation W29632023392 @default.
- W2963202339 hasOpenAccess W2963202339 @default.
- W2963202339 hasPrimaryLocation W29632023391 @default.
- W2963202339 hasRelatedWork W1897048171 @default.
- W2963202339 hasRelatedWork W1926323357 @default.
- W2963202339 hasRelatedWork W2029249305 @default.
- W2963202339 hasRelatedWork W2115571026 @default.
- W2963202339 hasRelatedWork W2144043954 @default.
- W2963202339 hasRelatedWork W2278250695 @default.