Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963213461> ?p ?o ?g. }
- W2963213461 endingPage "578" @default.
- W2963213461 startingPage "565" @default.
- W2963213461 abstract "Deep learning has been successfully introduced for 2D-image denoising, but it is still unsatisfactory for hyperspectral image (HSI) denoising due to the unacceptable computational complexity of the end-to-end training process and the difficulty of building a universal 3D-image training dataset. In this paper, instead of developing an end-to-end deep learning denoising network, we propose an HSI denoising framework for the removal of mixed Gaussian impulse noise, in which the denoising problem is modeled as a convolutional neural network (CNN) constrained non-negative matrix factorization problem. Using the proximal alternating linearized minimization, the optimization can be divided into three steps: the update of the spectral matrix, the update of the abundance matrix, and the estimation of the sparse noise. Then, we design the CNN architecture and proposed two training schemes, which can allow the CNN to be trained with a 2D-image dataset. Compared with the state-of-the-art denoising methods, the proposed method has a relatively good performance on the removal of the Gaussian and mixed Gaussian impulse noises. More importantly, the proposed model can be only trained once by a 2D-image dataset but can be used to denoise HSIs with different numbers of channel bands." @default.
- W2963213461 created "2019-07-30" @default.
- W2963213461 creator A5009073713 @default.
- W2963213461 creator A5050785912 @default.
- W2963213461 creator A5072435188 @default.
- W2963213461 date "2020-01-01" @default.
- W2963213461 modified "2023-10-15" @default.
- W2963213461 title "Hyperspectral Image Denoising via Matrix Factorization and Deep Prior Regularization" @default.
- W2963213461 cites W1906770428 @default.
- W2963213461 cites W1939176905 @default.
- W2963213461 cites W1944540851 @default.
- W2963213461 cites W1963882359 @default.
- W2963213461 cites W1968154520 @default.
- W2963213461 cites W1969760160 @default.
- W2963213461 cites W1976615758 @default.
- W2963213461 cites W1983364832 @default.
- W2963213461 cites W1994040806 @default.
- W2963213461 cites W2002019260 @default.
- W2963213461 cites W2027982384 @default.
- W2963213461 cites W2037642501 @default.
- W2963213461 cites W2039596145 @default.
- W2963213461 cites W2053514113 @default.
- W2963213461 cites W2060403006 @default.
- W2963213461 cites W2076063813 @default.
- W2963213461 cites W2095906131 @default.
- W2963213461 cites W2100109944 @default.
- W2963213461 cites W2129981175 @default.
- W2963213461 cites W2153295338 @default.
- W2963213461 cites W2161073299 @default.
- W2963213461 cites W2221899823 @default.
- W2963213461 cites W2289756263 @default.
- W2963213461 cites W2324845311 @default.
- W2963213461 cites W2344955579 @default.
- W2963213461 cites W2464748116 @default.
- W2963213461 cites W2508457857 @default.
- W2963213461 cites W2519420704 @default.
- W2963213461 cites W2528975388 @default.
- W2963213461 cites W2588000623 @default.
- W2963213461 cites W2601517469 @default.
- W2963213461 cites W2613155248 @default.
- W2963213461 cites W2628535015 @default.
- W2963213461 cites W2732386754 @default.
- W2963213461 cites W2751646824 @default.
- W2963213461 cites W2753754894 @default.
- W2963213461 cites W2789677693 @default.
- W2963213461 cites W2790528326 @default.
- W2963213461 cites W2793218933 @default.
- W2963213461 cites W2794215437 @default.
- W2963213461 cites W2933054875 @default.
- W2963213461 cites W2964179170 @default.
- W2963213461 cites W4233760599 @default.
- W2963213461 doi "https://doi.org/10.1109/tip.2019.2928627" @default.
- W2963213461 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31329115" @default.
- W2963213461 hasPublicationYear "2020" @default.
- W2963213461 type Work @default.
- W2963213461 sameAs 2963213461 @default.
- W2963213461 citedByCount "45" @default.
- W2963213461 countsByYear W29632134612020 @default.
- W2963213461 countsByYear W29632134612021 @default.
- W2963213461 countsByYear W29632134612022 @default.
- W2963213461 countsByYear W29632134612023 @default.
- W2963213461 crossrefType "journal-article" @default.
- W2963213461 hasAuthorship W2963213461A5009073713 @default.
- W2963213461 hasAuthorship W2963213461A5050785912 @default.
- W2963213461 hasAuthorship W2963213461A5072435188 @default.
- W2963213461 hasConcept C101453961 @default.
- W2963213461 hasConcept C106430172 @default.
- W2963213461 hasConcept C115961682 @default.
- W2963213461 hasConcept C121332964 @default.
- W2963213461 hasConcept C127372701 @default.
- W2963213461 hasConcept C152671427 @default.
- W2963213461 hasConcept C153180895 @default.
- W2963213461 hasConcept C154945302 @default.
- W2963213461 hasConcept C158693339 @default.
- W2963213461 hasConcept C159078339 @default.
- W2963213461 hasConcept C160633673 @default.
- W2963213461 hasConcept C163294075 @default.
- W2963213461 hasConcept C2776135515 @default.
- W2963213461 hasConcept C2983327147 @default.
- W2963213461 hasConcept C41008148 @default.
- W2963213461 hasConcept C4199805 @default.
- W2963213461 hasConcept C42355184 @default.
- W2963213461 hasConcept C62520636 @default.
- W2963213461 hasConcept C81363708 @default.
- W2963213461 hasConcept C9417928 @default.
- W2963213461 hasConceptScore W2963213461C101453961 @default.
- W2963213461 hasConceptScore W2963213461C106430172 @default.
- W2963213461 hasConceptScore W2963213461C115961682 @default.
- W2963213461 hasConceptScore W2963213461C121332964 @default.
- W2963213461 hasConceptScore W2963213461C127372701 @default.
- W2963213461 hasConceptScore W2963213461C152671427 @default.
- W2963213461 hasConceptScore W2963213461C153180895 @default.
- W2963213461 hasConceptScore W2963213461C154945302 @default.
- W2963213461 hasConceptScore W2963213461C158693339 @default.
- W2963213461 hasConceptScore W2963213461C159078339 @default.
- W2963213461 hasConceptScore W2963213461C160633673 @default.
- W2963213461 hasConceptScore W2963213461C163294075 @default.
- W2963213461 hasConceptScore W2963213461C2776135515 @default.