Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963244375> ?p ?o ?g. }
- W2963244375 abstract "Abstract Using a simple relation between the virial expansion coefficients of the pressure and the entropy expansion coefficients in the case of the monomer–dimer model on infinite regular lattices, we have shown that, on hypercubic lattices of any dimension, the virial coefficients are positive through the 20th order. We have observed that all virial coefficients so far known for this system are positive also on infinite regular lattices with different structure. We are thus led to conjecture that the virial expansion coefficients m k are always positive. These considerations can be extended to the study of related bounds on finite graphs generalizing the infinite regular lattices, namely the finite grids and the regular biconnected graphs. The validity of the bounds Δ k ln ( i ! N ( i ) ) ≤ 0 for k ≥ 2 , where N ( i ) is the number of configurations of i dimers on the graph and Δ is the forward difference operator, is shown to correspond to the positivity of the virial coefficients. Our tests on many finite lattice graphs indicate that on large lattices these bounds are satisfied, giving support to the conjecture on the positivity of the virial coefficients. Moreover, in an exhaustive survey of some classes of regular biconnected graphs with a not too large number v of vertices, we observe only few violations of these bounds. We conjecture that the frequency of the violations vanishes as v → ∞ . Using an inequality by Heilmann and Lieb, we find rigorous upper bounds on N ( i ) valid for arbitrary graphs and for regular graphs. The similarity between this inequality and the one conjectured above suggests that one study the stricter inequality m k ≥ 1 2 k for the virial coefficients, which is valid for all the known coefficients of the infinite regular lattice models." @default.
- W2963244375 created "2019-07-30" @default.
- W2963244375 creator A5036983382 @default.
- W2963244375 creator A5037302391 @default.
- W2963244375 creator A5060592963 @default.
- W2963244375 date "2015-11-01" @default.
- W2963244375 modified "2023-10-16" @default.
- W2963244375 title "Positivity of the virial coefficients in lattice dimer models and upper bounds on the number of matchings on graphs" @default.
- W2963244375 cites W1536152141 @default.
- W2963244375 cites W1847975508 @default.
- W2963244375 cites W1966131344 @default.
- W2963244375 cites W1970736660 @default.
- W2963244375 cites W1972921236 @default.
- W2963244375 cites W1973523344 @default.
- W2963244375 cites W1976288857 @default.
- W2963244375 cites W1976568063 @default.
- W2963244375 cites W1983831244 @default.
- W2963244375 cites W1995811029 @default.
- W2963244375 cites W1999227640 @default.
- W2963244375 cites W2000462523 @default.
- W2963244375 cites W2032529651 @default.
- W2963244375 cites W2037389370 @default.
- W2963244375 cites W2042269609 @default.
- W2963244375 cites W2046198997 @default.
- W2963244375 cites W2058455341 @default.
- W2963244375 cites W2070796591 @default.
- W2963244375 cites W2083618772 @default.
- W2963244375 cites W2092704115 @default.
- W2963244375 cites W2103230991 @default.
- W2963244375 cites W2103238263 @default.
- W2963244375 cites W2128943288 @default.
- W2963244375 cites W2136716758 @default.
- W2963244375 cites W2155237361 @default.
- W2963244375 cites W2157882497 @default.
- W2963244375 cites W2345279016 @default.
- W2963244375 cites W2963066342 @default.
- W2963244375 doi "https://doi.org/10.1016/j.physa.2015.05.106" @default.
- W2963244375 hasPublicationYear "2015" @default.
- W2963244375 type Work @default.
- W2963244375 sameAs 2963244375 @default.
- W2963244375 citedByCount "1" @default.
- W2963244375 countsByYear W29632443752016 @default.
- W2963244375 crossrefType "journal-article" @default.
- W2963244375 hasAuthorship W2963244375A5036983382 @default.
- W2963244375 hasAuthorship W2963244375A5037302391 @default.
- W2963244375 hasAuthorship W2963244375A5060592963 @default.
- W2963244375 hasBestOaLocation W29632443752 @default.
- W2963244375 hasConcept C114614502 @default.
- W2963244375 hasConcept C121332964 @default.
- W2963244375 hasConcept C134306372 @default.
- W2963244375 hasConcept C189549420 @default.
- W2963244375 hasConcept C22431428 @default.
- W2963244375 hasConcept C24890656 @default.
- W2963244375 hasConcept C2780990831 @default.
- W2963244375 hasConcept C2781204021 @default.
- W2963244375 hasConcept C33923547 @default.
- W2963244375 hasConcept C62520636 @default.
- W2963244375 hasConcept C77553402 @default.
- W2963244375 hasConcept C93218973 @default.
- W2963244375 hasConcept C98444146 @default.
- W2963244375 hasConceptScore W2963244375C114614502 @default.
- W2963244375 hasConceptScore W2963244375C121332964 @default.
- W2963244375 hasConceptScore W2963244375C134306372 @default.
- W2963244375 hasConceptScore W2963244375C189549420 @default.
- W2963244375 hasConceptScore W2963244375C22431428 @default.
- W2963244375 hasConceptScore W2963244375C24890656 @default.
- W2963244375 hasConceptScore W2963244375C2780990831 @default.
- W2963244375 hasConceptScore W2963244375C2781204021 @default.
- W2963244375 hasConceptScore W2963244375C33923547 @default.
- W2963244375 hasConceptScore W2963244375C62520636 @default.
- W2963244375 hasConceptScore W2963244375C77553402 @default.
- W2963244375 hasConceptScore W2963244375C93218973 @default.
- W2963244375 hasConceptScore W2963244375C98444146 @default.
- W2963244375 hasLocation W29632443751 @default.
- W2963244375 hasLocation W29632443752 @default.
- W2963244375 hasLocation W29632443753 @default.
- W2963244375 hasOpenAccess W2963244375 @default.
- W2963244375 hasPrimaryLocation W29632443751 @default.
- W2963244375 hasRelatedWork W1580692796 @default.
- W2963244375 hasRelatedWork W1661128973 @default.
- W2963244375 hasRelatedWork W1828319603 @default.
- W2963244375 hasRelatedWork W1868377977 @default.
- W2963244375 hasRelatedWork W187223802 @default.
- W2963244375 hasRelatedWork W1978690111 @default.
- W2963244375 hasRelatedWork W1991432506 @default.
- W2963244375 hasRelatedWork W2933730404 @default.
- W2963244375 hasRelatedWork W2949561856 @default.
- W2963244375 hasRelatedWork W2964200596 @default.
- W2963244375 hasRelatedWork W2985329284 @default.
- W2963244375 hasRelatedWork W3086579803 @default.
- W2963244375 hasRelatedWork W3088059916 @default.
- W2963244375 hasRelatedWork W3088535225 @default.
- W2963244375 hasRelatedWork W3102239133 @default.
- W2963244375 hasRelatedWork W3103424151 @default.
- W2963244375 hasRelatedWork W3104055344 @default.
- W2963244375 hasRelatedWork W3155324474 @default.
- W2963244375 hasRelatedWork W3170987371 @default.
- W2963244375 hasRelatedWork W568938745 @default.
- W2963244375 isParatext "false" @default.
- W2963244375 isRetracted "false" @default.