Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963251149> ?p ?o ?g. }
- W2963251149 endingPage "120766" @default.
- W2963251149 startingPage "120766" @default.
- W2963251149 abstract "Mathematical modeling based on response surface method and also an artificial brain structure-based model was applied to predict thermal properties of a water-based nanofluid earned by a set of laboratory results. Functionalized DWCNTs were used to enrich the conventional fluid (Water in the present study). Using response surface method a two-variable experimental based correlation proposed as a function of concentration and temperature. Also, artificial neural network employed as a brain structure-based approach with two inputs (temperature and concentrations) and thermal conductivity ratio as the desired output. Using mathematical and artificial based methods help to improve the economic efficiency of experimental studies." @default.
- W2963251149 created "2019-07-30" @default.
- W2963251149 creator A5015389811 @default.
- W2963251149 creator A5034312242 @default.
- W2963251149 date "2020-02-01" @default.
- W2963251149 modified "2023-10-18" @default.
- W2963251149 title "Mathematical and artificial brain structure-based modeling of heat conductivity of water based nanofluid enriched by double wall carbon nanotubes" @default.
- W2963251149 cites W1124123259 @default.
- W2963251149 cites W1420943913 @default.
- W2963251149 cites W1445469414 @default.
- W2963251149 cites W1758979016 @default.
- W2963251149 cites W1915575069 @default.
- W2963251149 cites W1931093773 @default.
- W2963251149 cites W1970054902 @default.
- W2963251149 cites W1977131057 @default.
- W2963251149 cites W1984492070 @default.
- W2963251149 cites W1992644507 @default.
- W2963251149 cites W2000481118 @default.
- W2963251149 cites W2000530641 @default.
- W2963251149 cites W2002948299 @default.
- W2963251149 cites W2010278089 @default.
- W2963251149 cites W2012687403 @default.
- W2963251149 cites W2018258856 @default.
- W2963251149 cites W2021109748 @default.
- W2963251149 cites W2026794070 @default.
- W2963251149 cites W2028278245 @default.
- W2963251149 cites W2032040412 @default.
- W2963251149 cites W2033457011 @default.
- W2963251149 cites W2044333810 @default.
- W2963251149 cites W2044554025 @default.
- W2963251149 cites W2049985736 @default.
- W2963251149 cites W2060252302 @default.
- W2963251149 cites W2061893954 @default.
- W2963251149 cites W2062342825 @default.
- W2963251149 cites W2069089271 @default.
- W2963251149 cites W2077266528 @default.
- W2963251149 cites W2077488940 @default.
- W2963251149 cites W2085893083 @default.
- W2963251149 cites W2090972687 @default.
- W2963251149 cites W2093468972 @default.
- W2963251149 cites W2094077048 @default.
- W2963251149 cites W2180426453 @default.
- W2963251149 cites W2193834300 @default.
- W2963251149 cites W2214851944 @default.
- W2963251149 cites W2238236845 @default.
- W2963251149 cites W2264168024 @default.
- W2963251149 cites W2407225529 @default.
- W2963251149 cites W2507984219 @default.
- W2963251149 cites W2511341525 @default.
- W2963251149 cites W2520545092 @default.
- W2963251149 cites W2522380928 @default.
- W2963251149 cites W2540050848 @default.
- W2963251149 cites W2553059870 @default.
- W2963251149 cites W2559815357 @default.
- W2963251149 cites W2576362466 @default.
- W2963251149 cites W2586350318 @default.
- W2963251149 cites W2591528693 @default.
- W2963251149 cites W2604538855 @default.
- W2963251149 cites W2605216613 @default.
- W2963251149 cites W2607260556 @default.
- W2963251149 cites W2615784844 @default.
- W2963251149 cites W2620976631 @default.
- W2963251149 cites W2621985684 @default.
- W2963251149 cites W2626025892 @default.
- W2963251149 cites W2738412826 @default.
- W2963251149 cites W2755863423 @default.
- W2963251149 cites W2774967316 @default.
- W2963251149 cites W2791158858 @default.
- W2963251149 cites W2791281191 @default.
- W2963251149 cites W2795065216 @default.
- W2963251149 cites W2808829409 @default.
- W2963251149 cites W2808839648 @default.
- W2963251149 cites W2884061894 @default.
- W2963251149 cites W2887946083 @default.
- W2963251149 cites W2889667970 @default.
- W2963251149 cites W2895454554 @default.
- W2963251149 cites W2898326669 @default.
- W2963251149 cites W2905695445 @default.
- W2963251149 cites W573143683 @default.
- W2963251149 cites W849377165 @default.
- W2963251149 cites W851963713 @default.
- W2963251149 cites W872501606 @default.
- W2963251149 cites W998874852 @default.
- W2963251149 doi "https://doi.org/10.1016/j.physa.2019.04.002" @default.
- W2963251149 hasPublicationYear "2020" @default.
- W2963251149 type Work @default.
- W2963251149 sameAs 2963251149 @default.
- W2963251149 citedByCount "11" @default.
- W2963251149 countsByYear W29632511492020 @default.
- W2963251149 countsByYear W29632511492021 @default.
- W2963251149 countsByYear W29632511492022 @default.
- W2963251149 crossrefType "journal-article" @default.
- W2963251149 hasAuthorship W2963251149A5015389811 @default.
- W2963251149 hasAuthorship W2963251149A5034312242 @default.
- W2963251149 hasConcept C121332964 @default.
- W2963251149 hasConcept C154945302 @default.
- W2963251149 hasConcept C155672457 @default.
- W2963251149 hasConcept C159985019 @default.