Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963290110> ?p ?o ?g. }
- W2963290110 endingPage "3191" @default.
- W2963290110 startingPage "3191" @default.
- W2963290110 abstract "Light Detection and Ranging (LiDAR) produces 3D point clouds that describe ground objects, and has been used to make object interpretation in many cases. However, traditional LiDAR only records discrete echo signals and provides limited feature parameters of point clouds, while full-waveform LiDAR (FWL) records the backscattered echo in the form of a waveform, which provides more echo information. With the development of machine learning, support vector machine (SVM) is one of the commonly used classifiers to deal with high dimensional data via small amount of samples. Ensemble learning, which combines a set of base classifiers to determine the output result, is presented and SVM ensemble is used to improve the discrimination ability, owing to small differences in features between different types of data. In addition, previous kernel functions of SVM usually cause under-fitting or over-fitting that decreases the generalization performance. Hence, a series of kernel functions based on wavelet analysis are used to construct different wavelet SVMs (WSVMs) that improve the heterogeneity of ensemble system. Meanwhile, the parameters of SVM have a significant influence on the classification result. Therefore, in this paper, FWL point clouds are classified by WSVM ensemble and particle swarm optimization is used to find the optimal parameters of WSVM. Experimental results illustrate that the proposed method is robust and effective, and it is applicable to some practical work." @default.
- W2963290110 created "2019-07-30" @default.
- W2963290110 creator A5027377914 @default.
- W2963290110 creator A5037665726 @default.
- W2963290110 creator A5060625066 @default.
- W2963290110 creator A5073968803 @default.
- W2963290110 date "2019-07-19" @default.
- W2963290110 modified "2023-10-09" @default.
- W2963290110 title "Full-Waveform LiDAR Point Clouds Classification Based on Wavelet Support Vector Machine and Ensemble Learning" @default.
- W2963290110 cites W1584927526 @default.
- W2963290110 cites W1968612609 @default.
- W2963290110 cites W1990077509 @default.
- W2963290110 cites W1998294886 @default.
- W2963290110 cites W1998342250 @default.
- W2963290110 cites W1999946446 @default.
- W2963290110 cites W2000282340 @default.
- W2963290110 cites W2008914990 @default.
- W2963290110 cites W2011287807 @default.
- W2963290110 cites W2016428929 @default.
- W2963290110 cites W2030049536 @default.
- W2963290110 cites W2037282532 @default.
- W2963290110 cites W2042031583 @default.
- W2963290110 cites W2046203484 @default.
- W2963290110 cites W2051973532 @default.
- W2963290110 cites W2062936627 @default.
- W2963290110 cites W2063875787 @default.
- W2963290110 cites W2082002830 @default.
- W2963290110 cites W2086913204 @default.
- W2963290110 cites W2121434426 @default.
- W2963290110 cites W2124656873 @default.
- W2963290110 cites W2131256165 @default.
- W2963290110 cites W2169500530 @default.
- W2963290110 cites W2260152495 @default.
- W2963290110 cites W2513504913 @default.
- W2963290110 cites W2567086669 @default.
- W2963290110 cites W2573137292 @default.
- W2963290110 cites W2582131889 @default.
- W2963290110 cites W2585528949 @default.
- W2963290110 cites W2599022140 @default.
- W2963290110 cites W2602690536 @default.
- W2963290110 cites W2609570670 @default.
- W2963290110 cites W2612779818 @default.
- W2963290110 cites W2614048556 @default.
- W2963290110 cites W2615751500 @default.
- W2963290110 cites W2732547529 @default.
- W2963290110 cites W2790672514 @default.
- W2963290110 cites W2793927960 @default.
- W2963290110 cites W2807072713 @default.
- W2963290110 cites W2883822500 @default.
- W2963290110 cites W2891567162 @default.
- W2963290110 cites W2912118475 @default.
- W2963290110 cites W4213138420 @default.
- W2963290110 cites W4255128219 @default.
- W2963290110 doi "https://doi.org/10.3390/s19143191" @default.
- W2963290110 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6679236" @default.
- W2963290110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31331086" @default.
- W2963290110 hasPublicationYear "2019" @default.
- W2963290110 type Work @default.
- W2963290110 sameAs 2963290110 @default.
- W2963290110 citedByCount "5" @default.
- W2963290110 countsByYear W29632901102020 @default.
- W2963290110 countsByYear W29632901102021 @default.
- W2963290110 countsByYear W29632901102023 @default.
- W2963290110 crossrefType "journal-article" @default.
- W2963290110 hasAuthorship W2963290110A5027377914 @default.
- W2963290110 hasAuthorship W2963290110A5037665726 @default.
- W2963290110 hasAuthorship W2963290110A5060625066 @default.
- W2963290110 hasAuthorship W2963290110A5073968803 @default.
- W2963290110 hasBestOaLocation W29632901101 @default.
- W2963290110 hasConcept C114614502 @default.
- W2963290110 hasConcept C119857082 @default.
- W2963290110 hasConcept C12267149 @default.
- W2963290110 hasConcept C131979681 @default.
- W2963290110 hasConcept C138885662 @default.
- W2963290110 hasConcept C153180895 @default.
- W2963290110 hasConcept C154945302 @default.
- W2963290110 hasConcept C197424946 @default.
- W2963290110 hasConcept C205649164 @default.
- W2963290110 hasConcept C2776401178 @default.
- W2963290110 hasConcept C33923547 @default.
- W2963290110 hasConcept C41008148 @default.
- W2963290110 hasConcept C41895202 @default.
- W2963290110 hasConcept C47432892 @default.
- W2963290110 hasConcept C51399673 @default.
- W2963290110 hasConcept C554190296 @default.
- W2963290110 hasConcept C62649853 @default.
- W2963290110 hasConcept C74193536 @default.
- W2963290110 hasConcept C76155785 @default.
- W2963290110 hasConcept C85617194 @default.
- W2963290110 hasConceptScore W2963290110C114614502 @default.
- W2963290110 hasConceptScore W2963290110C119857082 @default.
- W2963290110 hasConceptScore W2963290110C12267149 @default.
- W2963290110 hasConceptScore W2963290110C131979681 @default.
- W2963290110 hasConceptScore W2963290110C138885662 @default.
- W2963290110 hasConceptScore W2963290110C153180895 @default.
- W2963290110 hasConceptScore W2963290110C154945302 @default.
- W2963290110 hasConceptScore W2963290110C197424946 @default.
- W2963290110 hasConceptScore W2963290110C205649164 @default.