Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963301274> ?p ?o ?g. }
- W2963301274 endingPage "753" @default.
- W2963301274 startingPage "742" @default.
- W2963301274 abstract "In Part I, a Matching Pursuit LASSO (MPL) algorithm has been presented for solving large-scale sparse recovery (SR) problems. In this paper, we present a subspace search to further improve the performance of MPL, and then continue to address another major challenge of SR-batch SR with many signals, a consideration which is absent from most of previous l1-norm methods. A batch-mode MPL is developed to vastly speed up sparse recovery of many signals simultaneously. Comprehensive numerical experiments on compressive sensing and face recognition tasks demonstrate the superior performance of MPL and BMPL over other methods considered in this paper, in terms of sparse recovery ability and efficiency. In particular, BMPL is up to 400 times faster than existing l1-norm methods considered to be state-of-the-art." @default.
- W2963301274 created "2019-07-30" @default.
- W2963301274 creator A5012278873 @default.
- W2963301274 creator A5032352025 @default.
- W2963301274 creator A5091587294 @default.
- W2963301274 date "2015-02-01" @default.
- W2963301274 modified "2023-10-16" @default.
- W2963301274 title "Matching Pursuit LASSO Part II: Applications and Sparse Recovery Over Batch Signals" @default.
- W2963301274 cites W1982941867 @default.
- W2963301274 cites W1989975849 @default.
- W2963301274 cites W1994281301 @default.
- W2963301274 cites W1998812875 @default.
- W2963301274 cites W2003217181 @default.
- W2963301274 cites W2005876975 @default.
- W2963301274 cites W2021302824 @default.
- W2963301274 cites W2025079166 @default.
- W2963301274 cites W2039851473 @default.
- W2963301274 cites W2044762091 @default.
- W2963301274 cites W2046658845 @default.
- W2963301274 cites W2054502547 @default.
- W2963301274 cites W2063978378 @default.
- W2963301274 cites W2080296254 @default.
- W2963301274 cites W2084363278 @default.
- W2963301274 cites W2093347109 @default.
- W2963301274 cites W2099100030 @default.
- W2963301274 cites W2100526560 @default.
- W2963301274 cites W2100556411 @default.
- W2963301274 cites W2104266187 @default.
- W2963301274 cites W2109449402 @default.
- W2963301274 cites W2114122776 @default.
- W2963301274 cites W2116148865 @default.
- W2963301274 cites W2120100419 @default.
- W2963301274 cites W2120991191 @default.
- W2963301274 cites W2128659236 @default.
- W2963301274 cites W2129131372 @default.
- W2963301274 cites W2129812935 @default.
- W2963301274 cites W2132467081 @default.
- W2963301274 cites W2135929400 @default.
- W2963301274 cites W2148108699 @default.
- W2963301274 cites W2159563318 @default.
- W2963301274 cites W2160547390 @default.
- W2963301274 cites W2160979406 @default.
- W2963301274 cites W2161227280 @default.
- W2963301274 cites W2289917018 @default.
- W2963301274 cites W2963322354 @default.
- W2963301274 cites W3022380717 @default.
- W2963301274 cites W3103783116 @default.
- W2963301274 cites W4250955649 @default.
- W2963301274 doi "https://doi.org/10.1109/tsp.2014.2385660" @default.
- W2963301274 hasPublicationYear "2015" @default.
- W2963301274 type Work @default.
- W2963301274 sameAs 2963301274 @default.
- W2963301274 citedByCount "11" @default.
- W2963301274 countsByYear W29633012742015 @default.
- W2963301274 countsByYear W29633012742016 @default.
- W2963301274 countsByYear W29633012742017 @default.
- W2963301274 countsByYear W29633012742019 @default.
- W2963301274 countsByYear W29633012742020 @default.
- W2963301274 countsByYear W29633012742023 @default.
- W2963301274 crossrefType "journal-article" @default.
- W2963301274 hasAuthorship W2963301274A5012278873 @default.
- W2963301274 hasAuthorship W2963301274A5032352025 @default.
- W2963301274 hasAuthorship W2963301274A5091587294 @default.
- W2963301274 hasBestOaLocation W29633012742 @default.
- W2963301274 hasConcept C11413529 @default.
- W2963301274 hasConcept C121332964 @default.
- W2963301274 hasConcept C124066611 @default.
- W2963301274 hasConcept C124851039 @default.
- W2963301274 hasConcept C126255220 @default.
- W2963301274 hasConcept C136764020 @default.
- W2963301274 hasConcept C153180895 @default.
- W2963301274 hasConcept C154945302 @default.
- W2963301274 hasConcept C156872377 @default.
- W2963301274 hasConcept C163716315 @default.
- W2963301274 hasConcept C17744445 @default.
- W2963301274 hasConcept C191795146 @default.
- W2963301274 hasConcept C199539241 @default.
- W2963301274 hasConcept C2989281035 @default.
- W2963301274 hasConcept C32834561 @default.
- W2963301274 hasConcept C33923547 @default.
- W2963301274 hasConcept C37616216 @default.
- W2963301274 hasConcept C41008148 @default.
- W2963301274 hasConcept C56372850 @default.
- W2963301274 hasConcept C62520636 @default.
- W2963301274 hasConcept C99217422 @default.
- W2963301274 hasConceptScore W2963301274C11413529 @default.
- W2963301274 hasConceptScore W2963301274C121332964 @default.
- W2963301274 hasConceptScore W2963301274C124066611 @default.
- W2963301274 hasConceptScore W2963301274C124851039 @default.
- W2963301274 hasConceptScore W2963301274C126255220 @default.
- W2963301274 hasConceptScore W2963301274C136764020 @default.
- W2963301274 hasConceptScore W2963301274C153180895 @default.
- W2963301274 hasConceptScore W2963301274C154945302 @default.
- W2963301274 hasConceptScore W2963301274C156872377 @default.
- W2963301274 hasConceptScore W2963301274C163716315 @default.
- W2963301274 hasConceptScore W2963301274C17744445 @default.
- W2963301274 hasConceptScore W2963301274C191795146 @default.
- W2963301274 hasConceptScore W2963301274C199539241 @default.