Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963319768> ?p ?o ?g. }
- W2963319768 endingPage "651" @default.
- W2963319768 startingPage "625" @default.
- W2963319768 abstract "In the fields of nanoscience and nanotechnology, it is important to be able to functionalize surfaces chemically for a wide variety of applications. Scanning tunneling microscopes (STMs) are important instruments in this area used to measure the surface structure and chemistry with better than molecular resolution. Self-assembly is frequently used to create monolayers that redefine the surface chemistry in just a single-molecule-thick layer (Love et al. in Chem Rev 105(4):1103–1170, 2005; Nuzzo and Allara in J Am Chem Soc 105(13):4481–4483, 1983; Smith et al. in Prog Surf Sci 75(1):1–68, 2004). Indeed, STM images reveal rich information about the structure of self-assembled monolayers since they convey chemical and physical properties of the studied material. In order to assist in and to enhance the analysis of STM and other images (Thomas et al. in ACS Nano 10(5):5446–5451, 2016; Thomas et al. in ACS Nano 9(5):4734–4742, 2015), we propose and demonstrate an image processing framework that produces two image segmentations: One is based on intensities (apparent heights in STM images) and the other is based on textural patterns. The proposed framework begins with a cartoon + texture decomposition, which separates an image into its cartoon and texture components. Afterward, the cartoon image is segmented by a modified multiphase version of the local Chan–Vese model (Wang et al. in Pattern Recognit 43(3):603–618, 2010), while the texture image is segmented by a combination of 2D empirical wavelet transform and a clustering algorithm. Overall, our proposed framework contains several new features, specifically in presenting a new application of cartoon + texture decomposition and of the empirical wavelet transforms and in developing a specialized framework to segment STM images and other data. To demonstrate the potential of our approach, we apply it to raw STM images of various monolayers and present their corresponding segmentation results." @default.
- W2963319768 created "2019-07-30" @default.
- W2963319768 creator A5002251933 @default.
- W2963319768 creator A5005428502 @default.
- W2963319768 creator A5013993870 @default.
- W2963319768 creator A5030190007 @default.
- W2963319768 creator A5057799228 @default.
- W2963319768 creator A5061488805 @default.
- W2963319768 creator A5066141728 @default.
- W2963319768 creator A5072904837 @default.
- W2963319768 creator A5074086844 @default.
- W2963319768 creator A5084527055 @default.
- W2963319768 creator A5090707978 @default.
- W2963319768 date "2019-05-05" @default.
- W2963319768 modified "2023-10-15" @default.
- W2963319768 title "Segmentation of scanning tunneling microscopy images using variational methods and empirical wavelets" @default.
- W2963319768 cites W106533607 @default.
- W2963319768 cites W1967598238 @default.
- W2963319768 cites W1974088225 @default.
- W2963319768 cites W1975828861 @default.
- W2963319768 cites W1979887666 @default.
- W2963319768 cites W1990541396 @default.
- W2963319768 cites W1991113069 @default.
- W2963319768 cites W1998999283 @default.
- W2963319768 cites W2000982976 @default.
- W2963319768 cites W2003982588 @default.
- W2963319768 cites W2006624446 @default.
- W2963319768 cites W2008043556 @default.
- W2963319768 cites W2009017073 @default.
- W2963319768 cites W2018284728 @default.
- W2963319768 cites W2019900743 @default.
- W2963319768 cites W2020068051 @default.
- W2963319768 cites W2022150513 @default.
- W2963319768 cites W2022454744 @default.
- W2963319768 cites W2025016692 @default.
- W2963319768 cites W2026356722 @default.
- W2963319768 cites W2042226984 @default.
- W2963319768 cites W2042604173 @default.
- W2963319768 cites W2044465660 @default.
- W2963319768 cites W2045079045 @default.
- W2963319768 cites W2049694710 @default.
- W2963319768 cites W2050763737 @default.
- W2963319768 cites W2065350495 @default.
- W2963319768 cites W2073996439 @default.
- W2963319768 cites W2083698803 @default.
- W2963319768 cites W2085744431 @default.
- W2963319768 cites W2089493901 @default.
- W2963319768 cites W2091867141 @default.
- W2963319768 cites W2098684142 @default.
- W2963319768 cites W2100860054 @default.
- W2963319768 cites W2103559027 @default.
- W2963319768 cites W2112096267 @default.
- W2963319768 cites W2114487471 @default.
- W2963319768 cites W2114723491 @default.
- W2963319768 cites W2115528090 @default.
- W2963319768 cites W2116810533 @default.
- W2963319768 cites W2126440645 @default.
- W2963319768 cites W2132850088 @default.
- W2963319768 cites W2133059825 @default.
- W2963319768 cites W2138205176 @default.
- W2963319768 cites W2144485884 @default.
- W2963319768 cites W2147752924 @default.
- W2963319768 cites W2155280009 @default.
- W2963319768 cites W2163352848 @default.
- W2963319768 cites W2165734775 @default.
- W2963319768 cites W2166806803 @default.
- W2963319768 cites W2169898291 @default.
- W2963319768 cites W2172029033 @default.
- W2963319768 cites W2244987555 @default.
- W2963319768 cites W2287926569 @default.
- W2963319768 cites W2322762600 @default.
- W2963319768 cites W2339142012 @default.
- W2963319768 cites W2346469533 @default.
- W2963319768 cites W2520099303 @default.
- W2963319768 cites W2536814129 @default.
- W2963319768 cites W2551156701 @default.
- W2963319768 cites W2593127787 @default.
- W2963319768 cites W2610036018 @default.
- W2963319768 cites W2786013001 @default.
- W2963319768 cites W2800878235 @default.
- W2963319768 cites W4210381520 @default.
- W2963319768 doi "https://doi.org/10.1007/s10044-019-00824-0" @default.
- W2963319768 hasPublicationYear "2019" @default.
- W2963319768 type Work @default.
- W2963319768 sameAs 2963319768 @default.
- W2963319768 citedByCount "7" @default.
- W2963319768 countsByYear W29633197682020 @default.
- W2963319768 countsByYear W29633197682021 @default.
- W2963319768 countsByYear W29633197682022 @default.
- W2963319768 countsByYear W29633197682023 @default.
- W2963319768 crossrefType "journal-article" @default.
- W2963319768 hasAuthorship W2963319768A5002251933 @default.
- W2963319768 hasAuthorship W2963319768A5005428502 @default.
- W2963319768 hasAuthorship W2963319768A5013993870 @default.
- W2963319768 hasAuthorship W2963319768A5030190007 @default.
- W2963319768 hasAuthorship W2963319768A5057799228 @default.
- W2963319768 hasAuthorship W2963319768A5061488805 @default.
- W2963319768 hasAuthorship W2963319768A5066141728 @default.