Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963325557> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2963325557 endingPage "1670" @default.
- W2963325557 startingPage "1651" @default.
- W2963325557 abstract "In the (classical) Secretary Problem, one has to hire the best among n candidates. The candidates are interviewed, one at a time, at a uniformly random order, and one has to decide on the spot, whether to hire a candidate or continue interviewing. It is well known that the best candidate can be hired with a probability of 1/e (Dynkin, 1963). Recent works extend this problem to settings in which multiple candidates can be hired, subject to some constraint. Here, one wishes to hire a set of candidates maximizing a given objective set function.Almost all extensions considered in the literature assume the objective set function is either linear or submodular. Unfortunately, real world functions might not have either of these properties. Consider, for example, a scenario where one hires researchers for a project. Indeed, it can be that some researchers can substitute others for that matter. However, it can also be that some combinations of researchers result in synergy (see, e.g., Woolley et al., Science 2010, for a study on collective intelligence). The first phenomenon can be modeled by a submoudlar set function, while the latter cannot.In this work, we study the secretary problem with an arbitrary non-negative monotone valuation function, subject to a general matroid constraint. One can prove that, generally, only very poor results can be obtained for this class of objective functions. We tackle this hardness by combining the following: (1) Parametrizing our algorithms by the supermodular degree of the objective function (defined by Feige and Izsak, ITCS 2013), which, roughly speaking, measures the distance of a function from being submodular. (2) Suggesting an (arguably) natural model that permits approximation guarantees that are polynomial in the supermodular degree (as opposed to the standard model which allows only exponential guarantees). Our algorithms learn the input by running a non-trivial estimation algorithm on a portion of it whose size depends on the supermodular degree.We also provide better approximation guarantees for the special case of a uniform matroid constraint. To the best of our knowledge, our results represent the first algorithms for a secretary problem handling arbitrary non-negative monotone valuation functions." @default.
- W2963325557 created "2019-07-30" @default.
- W2963325557 creator A5044819853 @default.
- W2963325557 creator A5067029013 @default.
- W2963325557 date "2017-01-16" @default.
- W2963325557 modified "2023-09-26" @default.
- W2963325557 title "Building a good team: secretary problems and the supermodular degree" @default.
- W2963325557 doi "https://doi.org/10.5555/3039686.3039795" @default.
- W2963325557 hasPublicationYear "2017" @default.
- W2963325557 type Work @default.
- W2963325557 sameAs 2963325557 @default.
- W2963325557 citedByCount "11" @default.
- W2963325557 countsByYear W29633255572017 @default.
- W2963325557 countsByYear W29633255572018 @default.
- W2963325557 countsByYear W29633255572019 @default.
- W2963325557 countsByYear W29633255572020 @default.
- W2963325557 countsByYear W29633255572021 @default.
- W2963325557 crossrefType "proceedings-article" @default.
- W2963325557 hasAuthorship W2963325557A5044819853 @default.
- W2963325557 hasAuthorship W2963325557A5067029013 @default.
- W2963325557 hasConcept C10138342 @default.
- W2963325557 hasConcept C106286213 @default.
- W2963325557 hasConcept C118615104 @default.
- W2963325557 hasConcept C121332964 @default.
- W2963325557 hasConcept C126255220 @default.
- W2963325557 hasConcept C14036430 @default.
- W2963325557 hasConcept C144237770 @default.
- W2963325557 hasConcept C15312841 @default.
- W2963325557 hasConcept C154945302 @default.
- W2963325557 hasConcept C162324750 @default.
- W2963325557 hasConcept C177264268 @default.
- W2963325557 hasConcept C178621042 @default.
- W2963325557 hasConcept C186027771 @default.
- W2963325557 hasConcept C199360897 @default.
- W2963325557 hasConcept C24890656 @default.
- W2963325557 hasConcept C2524010 @default.
- W2963325557 hasConcept C2775997480 @default.
- W2963325557 hasConcept C2776036281 @default.
- W2963325557 hasConcept C2777212361 @default.
- W2963325557 hasConcept C2834757 @default.
- W2963325557 hasConcept C33923547 @default.
- W2963325557 hasConcept C41008148 @default.
- W2963325557 hasConcept C78458016 @default.
- W2963325557 hasConcept C86803240 @default.
- W2963325557 hasConceptScore W2963325557C10138342 @default.
- W2963325557 hasConceptScore W2963325557C106286213 @default.
- W2963325557 hasConceptScore W2963325557C118615104 @default.
- W2963325557 hasConceptScore W2963325557C121332964 @default.
- W2963325557 hasConceptScore W2963325557C126255220 @default.
- W2963325557 hasConceptScore W2963325557C14036430 @default.
- W2963325557 hasConceptScore W2963325557C144237770 @default.
- W2963325557 hasConceptScore W2963325557C15312841 @default.
- W2963325557 hasConceptScore W2963325557C154945302 @default.
- W2963325557 hasConceptScore W2963325557C162324750 @default.
- W2963325557 hasConceptScore W2963325557C177264268 @default.
- W2963325557 hasConceptScore W2963325557C178621042 @default.
- W2963325557 hasConceptScore W2963325557C186027771 @default.
- W2963325557 hasConceptScore W2963325557C199360897 @default.
- W2963325557 hasConceptScore W2963325557C24890656 @default.
- W2963325557 hasConceptScore W2963325557C2524010 @default.
- W2963325557 hasConceptScore W2963325557C2775997480 @default.
- W2963325557 hasConceptScore W2963325557C2776036281 @default.
- W2963325557 hasConceptScore W2963325557C2777212361 @default.
- W2963325557 hasConceptScore W2963325557C2834757 @default.
- W2963325557 hasConceptScore W2963325557C33923547 @default.
- W2963325557 hasConceptScore W2963325557C41008148 @default.
- W2963325557 hasConceptScore W2963325557C78458016 @default.
- W2963325557 hasConceptScore W2963325557C86803240 @default.
- W2963325557 hasLocation W29633255571 @default.
- W2963325557 hasOpenAccess W2963325557 @default.
- W2963325557 hasPrimaryLocation W29633255571 @default.
- W2963325557 hasRelatedWork W1503145443 @default.
- W2963325557 hasRelatedWork W1680189815 @default.
- W2963325557 hasRelatedWork W1708334602 @default.
- W2963325557 hasRelatedWork W2051290144 @default.
- W2963325557 hasRelatedWork W2075033017 @default.
- W2963325557 hasRelatedWork W2104704302 @default.
- W2963325557 hasRelatedWork W2118690363 @default.
- W2963325557 hasRelatedWork W2141733661 @default.
- W2963325557 hasRelatedWork W2170531897 @default.
- W2963325557 hasRelatedWork W2461937260 @default.
- W2963325557 hasRelatedWork W2563473945 @default.
- W2963325557 hasRelatedWork W2606123014 @default.
- W2963325557 hasRelatedWork W2611210886 @default.
- W2963325557 hasRelatedWork W2615774546 @default.
- W2963325557 hasRelatedWork W2770740556 @default.
- W2963325557 hasRelatedWork W2918256049 @default.
- W2963325557 hasRelatedWork W2950437265 @default.
- W2963325557 hasRelatedWork W3002343480 @default.
- W2963325557 hasRelatedWork W3006453237 @default.
- W2963325557 hasRelatedWork W3131353078 @default.
- W2963325557 isParatext "false" @default.
- W2963325557 isRetracted "false" @default.
- W2963325557 magId "2963325557" @default.
- W2963325557 workType "article" @default.