Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963342110> ?p ?o ?g. }
- W2963342110 endingPage "574" @default.
- W2963342110 startingPage "557" @default.
- W2963342110 abstract "We propose a straightforward method that simultaneously reconstructs the 3D facial structure and provides dense alignment. To achieve this, we design a 2D representation called UV position map which records the 3D shape of a complete face in UV space, then train a simple Convolutional Neural Network to regress it from a single 2D image. We also integrate a weight mask into the loss function during training to improve the performance of the network. Our method does not rely on any prior face model, and can reconstruct full facial geometry along with semantic meaning. Meanwhile, our network is very light-weighted and spends only 9.8ms to process an image, which is extremely faster than previous works. Experiments on multiple challenging datasets show that our method surpasses other state-of-the-art methods on both reconstruction and alignment tasks by a large margin." @default.
- W2963342110 created "2019-07-30" @default.
- W2963342110 creator A5001694472 @default.
- W2963342110 creator A5017200772 @default.
- W2963342110 creator A5022832205 @default.
- W2963342110 creator A5057120433 @default.
- W2963342110 creator A5074407139 @default.
- W2963342110 date "2018-01-01" @default.
- W2963342110 modified "2023-10-12" @default.
- W2963342110 title "Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network" @default.
- W2963342110 cites W1567532702 @default.
- W2963342110 cites W1682276745 @default.
- W2963342110 cites W1896424170 @default.
- W2963342110 cites W1946919140 @default.
- W2963342110 cites W2012885984 @default.
- W2963342110 cites W2036868818 @default.
- W2963342110 cites W2082308025 @default.
- W2963342110 cites W2086331119 @default.
- W2963342110 cites W2087007396 @default.
- W2963342110 cites W2092686894 @default.
- W2963342110 cites W2093922090 @default.
- W2963342110 cites W2101812986 @default.
- W2963342110 cites W2101866605 @default.
- W2963342110 cites W2111501452 @default.
- W2963342110 cites W2124861766 @default.
- W2963342110 cites W2129210471 @default.
- W2963342110 cites W2136000821 @default.
- W2963342110 cites W2136863438 @default.
- W2963342110 cites W2140488008 @default.
- W2963342110 cites W2146566773 @default.
- W2963342110 cites W2194775991 @default.
- W2963342110 cites W2234876530 @default.
- W2963342110 cites W2237250383 @default.
- W2963342110 cites W2277958045 @default.
- W2963342110 cites W2339268922 @default.
- W2963342110 cites W2465108587 @default.
- W2963342110 cites W2486034530 @default.
- W2963342110 cites W2519131448 @default.
- W2963342110 cites W2520331172 @default.
- W2963342110 cites W2546505780 @default.
- W2963342110 cites W2546584497 @default.
- W2963342110 cites W2547163414 @default.
- W2963342110 cites W2547612310 @default.
- W2963342110 cites W2548062649 @default.
- W2963342110 cites W2548615485 @default.
- W2963342110 cites W2548882894 @default.
- W2963342110 cites W2555510177 @default.
- W2963342110 cites W2560722161 @default.
- W2963342110 cites W2567624701 @default.
- W2963342110 cites W2584229793 @default.
- W2963342110 cites W2599226450 @default.
- W2963342110 cites W2604493845 @default.
- W2963342110 cites W2604672468 @default.
- W2963342110 cites W2605701576 @default.
- W2963342110 cites W2743049468 @default.
- W2963342110 cites W2748448865 @default.
- W2963342110 cites W2772024431 @default.
- W2963342110 cites W2781121766 @default.
- W2963342110 cites W2962780596 @default.
- W2963342110 cites W2962921904 @default.
- W2963342110 cites W2963202462 @default.
- W2963342110 cites W2963253045 @default.
- W2963342110 cites W2963480351 @default.
- W2963342110 cites W2963525732 @default.
- W2963342110 cites W2963544488 @default.
- W2963342110 cites W2964014798 @default.
- W2963342110 cites W2964145484 @default.
- W2963342110 cites W3104792420 @default.
- W2963342110 cites W3105538092 @default.
- W2963342110 cites W3106024060 @default.
- W2963342110 cites W4243755239 @default.
- W2963342110 doi "https://doi.org/10.1007/978-3-030-01264-9_33" @default.
- W2963342110 hasPublicationYear "2018" @default.
- W2963342110 type Work @default.
- W2963342110 sameAs 2963342110 @default.
- W2963342110 citedByCount "418" @default.
- W2963342110 countsByYear W29633421102018 @default.
- W2963342110 countsByYear W29633421102019 @default.
- W2963342110 countsByYear W29633421102020 @default.
- W2963342110 countsByYear W29633421102021 @default.
- W2963342110 countsByYear W29633421102022 @default.
- W2963342110 countsByYear W29633421102023 @default.
- W2963342110 crossrefType "book-chapter" @default.
- W2963342110 hasAuthorship W2963342110A5001694472 @default.
- W2963342110 hasAuthorship W2963342110A5017200772 @default.
- W2963342110 hasAuthorship W2963342110A5022832205 @default.
- W2963342110 hasAuthorship W2963342110A5057120433 @default.
- W2963342110 hasAuthorship W2963342110A5074407139 @default.
- W2963342110 hasBestOaLocation W29633421102 @default.
- W2963342110 hasConcept C10138342 @default.
- W2963342110 hasConcept C105795698 @default.
- W2963342110 hasConcept C127413603 @default.
- W2963342110 hasConcept C144024400 @default.
- W2963342110 hasConcept C154945302 @default.
- W2963342110 hasConcept C162324750 @default.
- W2963342110 hasConcept C170154142 @default.
- W2963342110 hasConcept C18555067 @default.
- W2963342110 hasConcept C198082294 @default.