Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963385711> ?p ?o ?g. }
- W2963385711 endingPage "111308" @default.
- W2963385711 startingPage "111308" @default.
- W2963385711 abstract "Accurate knowledge of seasonal and inter-annual distributions of plant species is required for many research and management agendas that track ecosystem health. Airborne imaging spectroscopy data have been used successfully to map plant species, but often only in a single season or over a limited spatial extent due to data availability. NASA's Hyperspectral Infrared Imager (HyspIRI) preparatory airborne campaign flew an imaging spectrometer from 2013 to 2015. This dataset captured a severe drought and thus provided the opportunity to evaluate species discrimination over an extreme range in environmental conditions. Here we evaluate the portability of image-based training data and accuracy of species discrimination. The imagery was acquired in the spring, summer, and fall seasons of 2013–2015 with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Reference spectral libraries were developed with three sets of spectra: spectra from a single image date, combining spectra from multiple dates (by season, by year, and from all dates), and creating leave-one-out (LOO) libraries that pooled spectra from all dates but one. Canonical discriminant analysis (CDA) was applied to reduce data dimensionality, and classification was performed using linear discriminant analysis (LDA). When only spectra from the same image date were used, plant species were classified with a mean kappa accuracy ranging between 0.80 and 0.86 for the nine dates. Seasonal and annual spectral libraries had comparable accuracies with mean kappa 0.79–0.83 and 0.78–0.83, respectively. Seasonal libraries performed slightly better than annual libraries for species because they better-incorporated changes in spectra due to phenology. Spectral libraries were not transferable across dates, with mean kappa accuracies dropping to 0.31–0.73 for LOO spectral libraries. These results emphasize that spectral libraries built from previously collected imagery may not be able to map plant species over new images accurately. Specifically, our results highlight the need to use reference spectra that adequately represent the phenological and biophysical status of the plant species within an image for accurate mapping. Our research provides relevant insight for advanced species-mapping techniques across broad spatial and temporal scales using imagery from sensors like HyspIRI." @default.
- W2963385711 created "2019-07-30" @default.
- W2963385711 creator A5018065949 @default.
- W2963385711 creator A5033867905 @default.
- W2963385711 creator A5056365202 @default.
- W2963385711 creator A5057277525 @default.
- W2963385711 creator A5073234634 @default.
- W2963385711 creator A5080984382 @default.
- W2963385711 date "2019-10-01" @default.
- W2963385711 modified "2023-10-12" @default.
- W2963385711 title "Classifying California plant species temporally using airborne hyperspectral imagery" @default.
- W2963385711 cites W1006483632 @default.
- W2963385711 cites W1563509357 @default.
- W2963385711 cites W1829952814 @default.
- W2963385711 cites W1971876701 @default.
- W2963385711 cites W1973322472 @default.
- W2963385711 cites W1985168315 @default.
- W2963385711 cites W1989655334 @default.
- W2963385711 cites W1994604181 @default.
- W2963385711 cites W1996379195 @default.
- W2963385711 cites W2001619934 @default.
- W2963385711 cites W2012831013 @default.
- W2963385711 cites W2013597166 @default.
- W2963385711 cites W2013968785 @default.
- W2963385711 cites W2019538185 @default.
- W2963385711 cites W2020677872 @default.
- W2963385711 cites W2024649846 @default.
- W2963385711 cites W2024841857 @default.
- W2963385711 cites W2036075195 @default.
- W2963385711 cites W2043572480 @default.
- W2963385711 cites W2047528185 @default.
- W2963385711 cites W2050921923 @default.
- W2963385711 cites W2053409082 @default.
- W2963385711 cites W2057162081 @default.
- W2963385711 cites W2057944383 @default.
- W2963385711 cites W2072093516 @default.
- W2963385711 cites W2072677073 @default.
- W2963385711 cites W2080116978 @default.
- W2963385711 cites W2086645298 @default.
- W2963385711 cites W2088651910 @default.
- W2963385711 cites W2091397530 @default.
- W2963385711 cites W2091996941 @default.
- W2963385711 cites W2097434015 @default.
- W2963385711 cites W2099501065 @default.
- W2963385711 cites W2099698780 @default.
- W2963385711 cites W2102270813 @default.
- W2963385711 cites W2108045836 @default.
- W2963385711 cites W2109191549 @default.
- W2963385711 cites W2112118618 @default.
- W2963385711 cites W2112732795 @default.
- W2963385711 cites W2116743998 @default.
- W2963385711 cites W2124564759 @default.
- W2963385711 cites W2125550848 @default.
- W2963385711 cites W2125865984 @default.
- W2963385711 cites W2138973222 @default.
- W2963385711 cites W2139303505 @default.
- W2963385711 cites W2140774872 @default.
- W2963385711 cites W2151362686 @default.
- W2963385711 cites W2152092242 @default.
- W2963385711 cites W2159411209 @default.
- W2963385711 cites W2159483744 @default.
- W2963385711 cites W2163689283 @default.
- W2963385711 cites W2166660987 @default.
- W2963385711 cites W2171367564 @default.
- W2963385711 cites W2176623756 @default.
- W2963385711 cites W2180682969 @default.
- W2963385711 cites W2225185554 @default.
- W2963385711 cites W2327650336 @default.
- W2963385711 cites W2483900378 @default.
- W2963385711 cites W2588560113 @default.
- W2963385711 cites W2608860984 @default.
- W2963385711 cites W2771568665 @default.
- W2963385711 cites W278157659 @default.
- W2963385711 cites W2789389819 @default.
- W2963385711 cites W2794323886 @default.
- W2963385711 cites W2800989100 @default.
- W2963385711 cites W2927156487 @default.
- W2963385711 cites W351779208 @default.
- W2963385711 cites W373681234 @default.
- W2963385711 cites W420801635 @default.
- W2963385711 doi "https://doi.org/10.1016/j.rse.2019.111308" @default.
- W2963385711 hasPublicationYear "2019" @default.
- W2963385711 type Work @default.
- W2963385711 sameAs 2963385711 @default.
- W2963385711 citedByCount "30" @default.
- W2963385711 countsByYear W29633857112019 @default.
- W2963385711 countsByYear W29633857112020 @default.
- W2963385711 countsByYear W29633857112021 @default.
- W2963385711 countsByYear W29633857112022 @default.
- W2963385711 countsByYear W29633857112023 @default.
- W2963385711 crossrefType "journal-article" @default.
- W2963385711 hasAuthorship W2963385711A5018065949 @default.
- W2963385711 hasAuthorship W2963385711A5033867905 @default.
- W2963385711 hasAuthorship W2963385711A5056365202 @default.
- W2963385711 hasAuthorship W2963385711A5057277525 @default.
- W2963385711 hasAuthorship W2963385711A5073234634 @default.
- W2963385711 hasAuthorship W2963385711A5080984382 @default.
- W2963385711 hasConcept C105795698 @default.