Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963448345> ?p ?o ?g. }
- W2963448345 endingPage "1172" @default.
- W2963448345 startingPage "1162" @default.
- W2963448345 abstract "In this paper, we focus on triplet-based deep binary embedding networks for image retrieval task. The triplet loss has been shown to be effective for hashing retrieval. However, most of the triplet-based deep networks treat the triplets equally or select the hard triplets based on the loss. Such strategies do not consider the order relations of the binary codes and ignore the hash encoding when learning the feature representations. To this end, we propose an order-aware reweighting method to effectively train the triplet-based deep networks, which up-weights the important triplets and down-weights the uninformative triplets via the rank lists of the binary codes. First, we present the order-aware weighting factors to indicate the importance of the triplets, which depend on the rank order of binary codes. Then, we reshape the triplet loss to the squared triplet loss such that the loss function will put more weights on the important triplets. The extensive evaluations on several benchmark datasets show that the proposed method achieves significant performance compared with the state-of-the-art baselines." @default.
- W2963448345 created "2019-07-30" @default.
- W2963448345 creator A5017205177 @default.
- W2963448345 creator A5041659406 @default.
- W2963448345 creator A5047878798 @default.
- W2963448345 creator A5051266997 @default.
- W2963448345 creator A5076868018 @default.
- W2963448345 creator A5087294951 @default.
- W2963448345 date "2020-04-01" @default.
- W2963448345 modified "2023-10-14" @default.
- W2963448345 title "Improving Deep Binary Embedding Networks by Order-Aware Reweighting of Triplets" @default.
- W2963448345 cites W1913628733 @default.
- W2963448345 cites W1939575207 @default.
- W2963448345 cites W2017814585 @default.
- W2963448345 cites W2031489346 @default.
- W2963448345 cites W2044195942 @default.
- W2963448345 cites W2084363474 @default.
- W2963448345 cites W2138621090 @default.
- W2963448345 cites W2143160289 @default.
- W2963448345 cites W2143321506 @default.
- W2963448345 cites W2149623757 @default.
- W2963448345 cites W2171790913 @default.
- W2963448345 cites W219040644 @default.
- W2963448345 cites W2411707397 @default.
- W2963448345 cites W2461086877 @default.
- W2963448345 cites W2464915613 @default.
- W2963448345 cites W2482980052 @default.
- W2963448345 cites W2493727926 @default.
- W2963448345 cites W2549070563 @default.
- W2963448345 cites W2586937979 @default.
- W2963448345 cites W2594227027 @default.
- W2963448345 cites W2610377240 @default.
- W2963448345 cites W2739130108 @default.
- W2963448345 cites W2757770740 @default.
- W2963448345 cites W2781821509 @default.
- W2963448345 cites W2963213486 @default.
- W2963448345 cites W2963350250 @default.
- W2963448345 cites W2963351448 @default.
- W2963448345 cites W2964076257 @default.
- W2963448345 cites W2964181521 @default.
- W2963448345 cites W2964280870 @default.
- W2963448345 cites W3099206234 @default.
- W2963448345 doi "https://doi.org/10.1109/tcsvt.2019.2899055" @default.
- W2963448345 hasPublicationYear "2020" @default.
- W2963448345 type Work @default.
- W2963448345 sameAs 2963448345 @default.
- W2963448345 citedByCount "6" @default.
- W2963448345 countsByYear W29634483452019 @default.
- W2963448345 countsByYear W29634483452021 @default.
- W2963448345 countsByYear W29634483452022 @default.
- W2963448345 countsByYear W29634483452023 @default.
- W2963448345 crossrefType "journal-article" @default.
- W2963448345 hasAuthorship W2963448345A5017205177 @default.
- W2963448345 hasAuthorship W2963448345A5041659406 @default.
- W2963448345 hasAuthorship W2963448345A5047878798 @default.
- W2963448345 hasAuthorship W2963448345A5051266997 @default.
- W2963448345 hasAuthorship W2963448345A5076868018 @default.
- W2963448345 hasAuthorship W2963448345A5087294951 @default.
- W2963448345 hasBestOaLocation W29634483452 @default.
- W2963448345 hasConcept C108583219 @default.
- W2963448345 hasConcept C11413529 @default.
- W2963448345 hasConcept C126838900 @default.
- W2963448345 hasConcept C13280743 @default.
- W2963448345 hasConcept C138885662 @default.
- W2963448345 hasConcept C153180895 @default.
- W2963448345 hasConcept C154945302 @default.
- W2963448345 hasConcept C183115368 @default.
- W2963448345 hasConcept C185798385 @default.
- W2963448345 hasConcept C205649164 @default.
- W2963448345 hasConcept C2776401178 @default.
- W2963448345 hasConcept C33923547 @default.
- W2963448345 hasConcept C38652104 @default.
- W2963448345 hasConcept C41008148 @default.
- W2963448345 hasConcept C41608201 @default.
- W2963448345 hasConcept C41895202 @default.
- W2963448345 hasConcept C48372109 @default.
- W2963448345 hasConcept C63435697 @default.
- W2963448345 hasConcept C71924100 @default.
- W2963448345 hasConcept C80444323 @default.
- W2963448345 hasConcept C94375191 @default.
- W2963448345 hasConcept C99138194 @default.
- W2963448345 hasConceptScore W2963448345C108583219 @default.
- W2963448345 hasConceptScore W2963448345C11413529 @default.
- W2963448345 hasConceptScore W2963448345C126838900 @default.
- W2963448345 hasConceptScore W2963448345C13280743 @default.
- W2963448345 hasConceptScore W2963448345C138885662 @default.
- W2963448345 hasConceptScore W2963448345C153180895 @default.
- W2963448345 hasConceptScore W2963448345C154945302 @default.
- W2963448345 hasConceptScore W2963448345C183115368 @default.
- W2963448345 hasConceptScore W2963448345C185798385 @default.
- W2963448345 hasConceptScore W2963448345C205649164 @default.
- W2963448345 hasConceptScore W2963448345C2776401178 @default.
- W2963448345 hasConceptScore W2963448345C33923547 @default.
- W2963448345 hasConceptScore W2963448345C38652104 @default.
- W2963448345 hasConceptScore W2963448345C41008148 @default.
- W2963448345 hasConceptScore W2963448345C41608201 @default.
- W2963448345 hasConceptScore W2963448345C41895202 @default.
- W2963448345 hasConceptScore W2963448345C48372109 @default.