Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963451883> ?p ?o ?g. }
- W2963451883 endingPage "593" @default.
- W2963451883 startingPage "585" @default.
- W2963451883 abstract "In this paper we extend the work of Smith and Papamichail (1999) and present fast approximate Bayesian algorithms for learning in complex scenarios where at any time frame, the relationships between explahatory state space variables can be described by a Bayesian network that evolve dynamically over time and the observations taken are not necessarily Gaussian. It uses recent developments in approximate Bayesian forecasting methods in combination with more familiar Gaussian propagation algorithms on junction trees. The procedure for learning state parameters from data is given explicitly for common sampling distributions and the methodology is illustrated through a real application. The efficiency of the dynamic approximation is explored by using the Hellinger divergence measure and theoretical bounds for the efficacy of such a procedure are discussed." @default.
- W2963451883 created "2019-07-30" @default.
- W2963451883 creator A5035211161 @default.
- W2963451883 creator A5056589695 @default.
- W2963451883 creator A5067938545 @default.
- W2963451883 date "1999-07-30" @default.
- W2963451883 modified "2023-09-23" @default.
- W2963451883 title "Approximate learning in complex dynamic Bayesian networks" @default.
- W2963451883 cites W1499132946 @default.
- W2963451883 cites W1565763124 @default.
- W2963451883 cites W1575388622 @default.
- W2963451883 cites W1590986876 @default.
- W2963451883 cites W1980363510 @default.
- W2963451883 cites W1980792219 @default.
- W2963451883 cites W2006889840 @default.
- W2963451883 cites W2039019714 @default.
- W2963451883 cites W2046584898 @default.
- W2963451883 cites W2069469807 @default.
- W2963451883 cites W2098823293 @default.
- W2963451883 cites W2148018895 @default.
- W2963451883 cites W2171265988 @default.
- W2963451883 cites W2313180207 @default.
- W2963451883 cites W2485758221 @default.
- W2963451883 hasPublicationYear "1999" @default.
- W2963451883 type Work @default.
- W2963451883 sameAs 2963451883 @default.
- W2963451883 citedByCount "0" @default.
- W2963451883 crossrefType "proceedings-article" @default.
- W2963451883 hasAuthorship W2963451883A5035211161 @default.
- W2963451883 hasAuthorship W2963451883A5056589695 @default.
- W2963451883 hasAuthorship W2963451883A5067938545 @default.
- W2963451883 hasConcept C105795698 @default.
- W2963451883 hasConcept C106131492 @default.
- W2963451883 hasConcept C107673813 @default.
- W2963451883 hasConcept C11413529 @default.
- W2963451883 hasConcept C119857082 @default.
- W2963451883 hasConcept C121332964 @default.
- W2963451883 hasConcept C138885662 @default.
- W2963451883 hasConcept C140779682 @default.
- W2963451883 hasConcept C153024298 @default.
- W2963451883 hasConcept C154945302 @default.
- W2963451883 hasConcept C160234255 @default.
- W2963451883 hasConcept C163716315 @default.
- W2963451883 hasConcept C207390915 @default.
- W2963451883 hasConcept C28826006 @default.
- W2963451883 hasConcept C31972630 @default.
- W2963451883 hasConcept C33724603 @default.
- W2963451883 hasConcept C33923547 @default.
- W2963451883 hasConcept C41008148 @default.
- W2963451883 hasConcept C41895202 @default.
- W2963451883 hasConcept C61326573 @default.
- W2963451883 hasConcept C62520636 @default.
- W2963451883 hasConcept C71983512 @default.
- W2963451883 hasConcept C72434380 @default.
- W2963451883 hasConcept C82142266 @default.
- W2963451883 hasConceptScore W2963451883C105795698 @default.
- W2963451883 hasConceptScore W2963451883C106131492 @default.
- W2963451883 hasConceptScore W2963451883C107673813 @default.
- W2963451883 hasConceptScore W2963451883C11413529 @default.
- W2963451883 hasConceptScore W2963451883C119857082 @default.
- W2963451883 hasConceptScore W2963451883C121332964 @default.
- W2963451883 hasConceptScore W2963451883C138885662 @default.
- W2963451883 hasConceptScore W2963451883C140779682 @default.
- W2963451883 hasConceptScore W2963451883C153024298 @default.
- W2963451883 hasConceptScore W2963451883C154945302 @default.
- W2963451883 hasConceptScore W2963451883C160234255 @default.
- W2963451883 hasConceptScore W2963451883C163716315 @default.
- W2963451883 hasConceptScore W2963451883C207390915 @default.
- W2963451883 hasConceptScore W2963451883C28826006 @default.
- W2963451883 hasConceptScore W2963451883C31972630 @default.
- W2963451883 hasConceptScore W2963451883C33724603 @default.
- W2963451883 hasConceptScore W2963451883C33923547 @default.
- W2963451883 hasConceptScore W2963451883C41008148 @default.
- W2963451883 hasConceptScore W2963451883C41895202 @default.
- W2963451883 hasConceptScore W2963451883C61326573 @default.
- W2963451883 hasConceptScore W2963451883C62520636 @default.
- W2963451883 hasConceptScore W2963451883C71983512 @default.
- W2963451883 hasConceptScore W2963451883C72434380 @default.
- W2963451883 hasConceptScore W2963451883C82142266 @default.
- W2963451883 hasOpenAccess W2963451883 @default.
- W2963451883 hasRelatedWork W1534313658 @default.
- W2963451883 hasRelatedWork W1585129016 @default.
- W2963451883 hasRelatedWork W1809333115 @default.
- W2963451883 hasRelatedWork W1997565964 @default.
- W2963451883 hasRelatedWork W2069664586 @default.
- W2963451883 hasRelatedWork W214291446 @default.
- W2963451883 hasRelatedWork W2144518280 @default.
- W2963451883 hasRelatedWork W2154798771 @default.
- W2963451883 hasRelatedWork W2284804857 @default.
- W2963451883 hasRelatedWork W2462157830 @default.
- W2963451883 hasRelatedWork W2612661529 @default.
- W2963451883 hasRelatedWork W2916041869 @default.
- W2963451883 hasRelatedWork W2953263857 @default.
- W2963451883 hasRelatedWork W2964239615 @default.
- W2963451883 hasRelatedWork W3003515798 @default.
- W2963451883 hasRelatedWork W3009733954 @default.
- W2963451883 hasRelatedWork W3103250059 @default.
- W2963451883 hasRelatedWork W3105285613 @default.