Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963456460> ?p ?o ?g. }
- W2963456460 endingPage "112827" @default.
- W2963456460 startingPage "112827" @default.
- W2963456460 abstract "The financial liberalization and globalization have increased the need for expert and intelligent systems to deal with credit risk management works. Clustering algorithms are widely used for knowledge acquisition in such systems to assess the credit risk from a data point of view. Conventional clustering algorithms fall short in credit risk assessment because credit datasets are typically high-dimensional, class-imbalanced, and with large sample size. To address these problems, this paper proposes a novel evolutionary multi-objective soft subspace clustering (EMOSSC) algorithm for credit risk assessment. Firstly, we develop a soft subspace clustering validity index for credit risk assessment, by which we can detect the underlying subspace for each cluster from the entire high-dimensional feature space, and we also incorporate the weight of each cluster and the between-cluster separation into the clustering validity index to obtain a comprehensive data structure in the clustering process. Secondly, we propose to optimize the clustering criteria of the new clustering validity index simultaneously by a multi-objective evolutionary algorithm without any predefined weighting coefficients, which guarantees the robustness of the algorithm. We also further provide a local search strategy which significantly accelerates the convergence of the algorithm. Thirdly, we design a GPU-based parallel computation framework for updating the weights of features in our proposed algorithm to improve the computational efficiency on credit datasets with large sample size. Finally, we conduct a comprehensive experiment, with its results demonstrate the superiority of our proposed algorithm in credit risk assessment." @default.
- W2963456460 created "2019-07-30" @default.
- W2963456460 creator A5008548056 @default.
- W2963456460 creator A5025475217 @default.
- W2963456460 creator A5038063815 @default.
- W2963456460 creator A5039340206 @default.
- W2963456460 creator A5060447965 @default.
- W2963456460 date "2019-12-01" @default.
- W2963456460 modified "2023-10-14" @default.
- W2963456460 title "Novel evolutionary multi-objective soft subspace clustering algorithm for credit risk assessment" @default.
- W2963456460 cites W1894414046 @default.
- W2963456460 cites W1964346230 @default.
- W2963456460 cites W1980210743 @default.
- W2963456460 cites W1980486587 @default.
- W2963456460 cites W1984533548 @default.
- W2963456460 cites W1985546543 @default.
- W2963456460 cites W1990368529 @default.
- W2963456460 cites W1994085451 @default.
- W2963456460 cites W2011441697 @default.
- W2963456460 cites W2020848494 @default.
- W2963456460 cites W2027393881 @default.
- W2963456460 cites W2033403400 @default.
- W2963456460 cites W2038565708 @default.
- W2963456460 cites W2041255922 @default.
- W2963456460 cites W2048801439 @default.
- W2963456460 cites W2051474456 @default.
- W2963456460 cites W2060394011 @default.
- W2963456460 cites W2060501093 @default.
- W2963456460 cites W2060724451 @default.
- W2963456460 cites W2061701011 @default.
- W2963456460 cites W2069046167 @default.
- W2963456460 cites W2071193822 @default.
- W2963456460 cites W2075356520 @default.
- W2963456460 cites W2075813083 @default.
- W2963456460 cites W2080476941 @default.
- W2963456460 cites W2086574870 @default.
- W2963456460 cites W2095512713 @default.
- W2963456460 cites W2102843519 @default.
- W2963456460 cites W2118978333 @default.
- W2963456460 cites W2124532504 @default.
- W2963456460 cites W2125070513 @default.
- W2963456460 cites W2125734176 @default.
- W2963456460 cites W2136478625 @default.
- W2963456460 cites W2161985854 @default.
- W2963456460 cites W2163094209 @default.
- W2963456460 cites W2169353679 @default.
- W2963456460 cites W2170176908 @default.
- W2963456460 cites W219179425 @default.
- W2963456460 cites W2259948456 @default.
- W2963456460 cites W2301938770 @default.
- W2963456460 cites W2808978750 @default.
- W2963456460 cites W3122651343 @default.
- W2963456460 doi "https://doi.org/10.1016/j.eswa.2019.112827" @default.
- W2963456460 hasPublicationYear "2019" @default.
- W2963456460 type Work @default.
- W2963456460 sameAs 2963456460 @default.
- W2963456460 citedByCount "15" @default.
- W2963456460 countsByYear W29634564602020 @default.
- W2963456460 countsByYear W29634564602021 @default.
- W2963456460 countsByYear W29634564602022 @default.
- W2963456460 countsByYear W29634564602023 @default.
- W2963456460 crossrefType "journal-article" @default.
- W2963456460 hasAuthorship W2963456460A5008548056 @default.
- W2963456460 hasAuthorship W2963456460A5025475217 @default.
- W2963456460 hasAuthorship W2963456460A5038063815 @default.
- W2963456460 hasAuthorship W2963456460A5039340206 @default.
- W2963456460 hasAuthorship W2963456460A5060447965 @default.
- W2963456460 hasConcept C10138342 @default.
- W2963456460 hasConcept C104047586 @default.
- W2963456460 hasConcept C11413529 @default.
- W2963456460 hasConcept C119857082 @default.
- W2963456460 hasConcept C124101348 @default.
- W2963456460 hasConcept C126838900 @default.
- W2963456460 hasConcept C162324750 @default.
- W2963456460 hasConcept C178350159 @default.
- W2963456460 hasConcept C183115368 @default.
- W2963456460 hasConcept C193143536 @default.
- W2963456460 hasConcept C33704608 @default.
- W2963456460 hasConcept C41008148 @default.
- W2963456460 hasConcept C71924100 @default.
- W2963456460 hasConcept C73555534 @default.
- W2963456460 hasConcept C94641424 @default.
- W2963456460 hasConceptScore W2963456460C10138342 @default.
- W2963456460 hasConceptScore W2963456460C104047586 @default.
- W2963456460 hasConceptScore W2963456460C11413529 @default.
- W2963456460 hasConceptScore W2963456460C119857082 @default.
- W2963456460 hasConceptScore W2963456460C124101348 @default.
- W2963456460 hasConceptScore W2963456460C126838900 @default.
- W2963456460 hasConceptScore W2963456460C162324750 @default.
- W2963456460 hasConceptScore W2963456460C178350159 @default.
- W2963456460 hasConceptScore W2963456460C183115368 @default.
- W2963456460 hasConceptScore W2963456460C193143536 @default.
- W2963456460 hasConceptScore W2963456460C33704608 @default.
- W2963456460 hasConceptScore W2963456460C41008148 @default.
- W2963456460 hasConceptScore W2963456460C71924100 @default.
- W2963456460 hasConceptScore W2963456460C73555534 @default.
- W2963456460 hasConceptScore W2963456460C94641424 @default.
- W2963456460 hasFunder F4320321001 @default.