Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963475452> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2963475452 endingPage "537" @default.
- W2963475452 startingPage "511" @default.
- W2963475452 abstract "We obtain sufficient conditions for convergence (almost everywhere) of multiple trigonometric Fourier series of functions $f$ in $L_2$ in terms of Weyl multipliers. We consider the case where rectangular partial sums of Fourier series $S_n(x;f)$ have indices $n=(n_1,dots,n_N) in mathbb Z^N$, $Nge 3$, in which $k$ $(1leq kleq N-2)$ components on the places ${j_1,dots,j_k}=J_k subset {1,dots,N} = M$ are elements of (single) lacunary sequences (i.e., we consider the, so called, multiple Fourier series with $J_k$-lacunary sequence of partial sums). We prove that for any sample $J_ksubset M$ the Weyl multiplier for convergence of these series has the form $W(nu)=prod limits_{j=1}^{N-k} log(|nu_{{alpha}_j}|+2)$, where $alpha_jin Msetminus J_k $, $nu=(nu_1,dots,nu_N)in{mathbb Z}^N$. So, the one-dimensional Weyl multiplier -- $log(|cdot|+2)$ -- presents in $W(nu)$ only on the places of free (nonlacunary) components of the vector $nu$. Earlier, in the case where $N-1$ components of the index $n$ are elements of lacunary sequences, convergence almost everywhere for multiple Fourier series was obtained in 1977 by M.Kojima in the classes $L_p$, $p>1$, and by D.K.Sanadze, Sh.V.Kheladze in Orlizc class. Note, that presence of two or more free components in the index $n$ (as follows from the results by Ch.Fefferman (1971)) does not guarantee the convergence almost everywhere of $S_n(x;f)$ for $Ngeq 3$ even in the class of continuous functions." @default.
- W2963475452 created "2019-07-30" @default.
- W2963475452 creator A5063355847 @default.
- W2963475452 creator A5071855639 @default.
- W2963475452 creator A5080084490 @default.
- W2963475452 date "2017-12-01" @default.
- W2963475452 modified "2023-10-16" @default.
- W2963475452 title "Sufficient conditions for convergence of multiple Fourier series with J k -lacunary sequence of rectangular partial sums in terms of Weyl multipliers" @default.
- W2963475452 cites W1037252452 @default.
- W2963475452 cites W2025610488 @default.
- W2963475452 cites W2054777142 @default.
- W2963475452 cites W2064683409 @default.
- W2963475452 cites W2071377387 @default.
- W2963475452 cites W2091243880 @default.
- W2963475452 cites W2324335219 @default.
- W2963475452 cites W2592895498 @default.
- W2963475452 cites W4233383997 @default.
- W2963475452 doi "https://doi.org/10.14232/actasm-017-275-8" @default.
- W2963475452 hasPublicationYear "2017" @default.
- W2963475452 type Work @default.
- W2963475452 sameAs 2963475452 @default.
- W2963475452 citedByCount "0" @default.
- W2963475452 crossrefType "journal-article" @default.
- W2963475452 hasAuthorship W2963475452A5063355847 @default.
- W2963475452 hasAuthorship W2963475452A5071855639 @default.
- W2963475452 hasAuthorship W2963475452A5080084490 @default.
- W2963475452 hasBestOaLocation W29634754522 @default.
- W2963475452 hasConcept C134306372 @default.
- W2963475452 hasConcept C143724316 @default.
- W2963475452 hasConcept C151730666 @default.
- W2963475452 hasConcept C162324750 @default.
- W2963475452 hasConcept C202444582 @default.
- W2963475452 hasConcept C207864730 @default.
- W2963475452 hasConcept C2777303404 @default.
- W2963475452 hasConcept C2778112365 @default.
- W2963475452 hasConcept C33923547 @default.
- W2963475452 hasConcept C50522688 @default.
- W2963475452 hasConcept C54355233 @default.
- W2963475452 hasConcept C63356602 @default.
- W2963475452 hasConcept C86803240 @default.
- W2963475452 hasConcept C94375191 @default.
- W2963475452 hasConceptScore W2963475452C134306372 @default.
- W2963475452 hasConceptScore W2963475452C143724316 @default.
- W2963475452 hasConceptScore W2963475452C151730666 @default.
- W2963475452 hasConceptScore W2963475452C162324750 @default.
- W2963475452 hasConceptScore W2963475452C202444582 @default.
- W2963475452 hasConceptScore W2963475452C207864730 @default.
- W2963475452 hasConceptScore W2963475452C2777303404 @default.
- W2963475452 hasConceptScore W2963475452C2778112365 @default.
- W2963475452 hasConceptScore W2963475452C33923547 @default.
- W2963475452 hasConceptScore W2963475452C50522688 @default.
- W2963475452 hasConceptScore W2963475452C54355233 @default.
- W2963475452 hasConceptScore W2963475452C63356602 @default.
- W2963475452 hasConceptScore W2963475452C86803240 @default.
- W2963475452 hasConceptScore W2963475452C94375191 @default.
- W2963475452 hasIssue "3-4" @default.
- W2963475452 hasLocation W29634754521 @default.
- W2963475452 hasLocation W29634754522 @default.
- W2963475452 hasOpenAccess W2963475452 @default.
- W2963475452 hasPrimaryLocation W29634754521 @default.
- W2963475452 hasRelatedWork W1987033902 @default.
- W2963475452 hasRelatedWork W2043338744 @default.
- W2963475452 hasRelatedWork W2058555931 @default.
- W2963475452 hasRelatedWork W2068490342 @default.
- W2963475452 hasRelatedWork W2157402869 @default.
- W2963475452 hasRelatedWork W2337585939 @default.
- W2963475452 hasRelatedWork W2552300960 @default.
- W2963475452 hasRelatedWork W2607561817 @default.
- W2963475452 hasRelatedWork W3023187614 @default.
- W2963475452 hasRelatedWork W998914686 @default.
- W2963475452 hasVolume "83" @default.
- W2963475452 isParatext "false" @default.
- W2963475452 isRetracted "false" @default.
- W2963475452 magId "2963475452" @default.
- W2963475452 workType "article" @default.