Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963501221> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2963501221 endingPage "214" @default.
- W2963501221 startingPage "203" @default.
- W2963501221 abstract "In this paper, we present an unsupervised learning framework for analyzing activities and interactions in surveillance videos. In our framework, three levels of video events are connected by Hierarchical Dirichlet Process (<small>HDP</small>) model: low-level visual features, simple atomic activities, and multi-agent interactions. Atomic activities are represented as distribution of low-level features, while complicated interactions are represented as distribution of atomic activities. This learning process is unsupervised. Given a training video sequence, low-level visual features are extracted based on optic flow and then clustered into different atomic activities and video clips are clustered into different interactions. The <small>HDP</small> model automatically decides the number of clusters, i.e., the categories of atomic activities and interactions. Based on the learned atomic activities and interactions, a training dataset is generated to train the Gaussian Process (<small>GP</small>) classifier. Then, the trained <small>GP</small> models work in newly captured video to classify interactions and detect abnormal events in real time. Furthermore, the temporal dependencies between video events learned by HDP-Hidden Markov Models (<small>HMM</small>) are effectively integrated into <small>GP</small> classifier to enhance the accuracy of the classification in newly captured videos. Our framework couples the benefits of the generative model (<small>HDP</small>) with the discriminant model (<small>GP</small>). We provide detailed experiments showing that our framework enjoys favorable performance in video event classification in real-time in a crowded traffic scene." @default.
- W2963501221 created "2019-07-30" @default.
- W2963501221 creator A5014111141 @default.
- W2963501221 creator A5014321482 @default.
- W2963501221 creator A5040412734 @default.
- W2963501221 creator A5059155432 @default.
- W2963501221 date "2018-04-01" @default.
- W2963501221 modified "2023-10-14" @default.
- W2963501221 title "Video Event Recognition and Anomaly Detection by Combining Gaussian Process and Hierarchical Dirichlet Process Models" @default.
- W2963501221 doi "https://doi.org/10.14358/pers.84.4.203" @default.
- W2963501221 hasPublicationYear "2018" @default.
- W2963501221 type Work @default.
- W2963501221 sameAs 2963501221 @default.
- W2963501221 citedByCount "13" @default.
- W2963501221 countsByYear W29635012212019 @default.
- W2963501221 countsByYear W29635012212020 @default.
- W2963501221 countsByYear W29635012212021 @default.
- W2963501221 countsByYear W29635012212022 @default.
- W2963501221 countsByYear W29635012212023 @default.
- W2963501221 crossrefType "journal-article" @default.
- W2963501221 hasAuthorship W2963501221A5014111141 @default.
- W2963501221 hasAuthorship W2963501221A5014321482 @default.
- W2963501221 hasAuthorship W2963501221A5040412734 @default.
- W2963501221 hasAuthorship W2963501221A5059155432 @default.
- W2963501221 hasBestOaLocation W29635012212 @default.
- W2963501221 hasConcept C119857082 @default.
- W2963501221 hasConcept C141318989 @default.
- W2963501221 hasConcept C147597530 @default.
- W2963501221 hasConcept C153180895 @default.
- W2963501221 hasConcept C154945302 @default.
- W2963501221 hasConcept C163716315 @default.
- W2963501221 hasConcept C167966045 @default.
- W2963501221 hasConcept C171686336 @default.
- W2963501221 hasConcept C185592680 @default.
- W2963501221 hasConcept C23224414 @default.
- W2963501221 hasConcept C39890363 @default.
- W2963501221 hasConcept C41008148 @default.
- W2963501221 hasConcept C500882744 @default.
- W2963501221 hasConcept C95623464 @default.
- W2963501221 hasConceptScore W2963501221C119857082 @default.
- W2963501221 hasConceptScore W2963501221C141318989 @default.
- W2963501221 hasConceptScore W2963501221C147597530 @default.
- W2963501221 hasConceptScore W2963501221C153180895 @default.
- W2963501221 hasConceptScore W2963501221C154945302 @default.
- W2963501221 hasConceptScore W2963501221C163716315 @default.
- W2963501221 hasConceptScore W2963501221C167966045 @default.
- W2963501221 hasConceptScore W2963501221C171686336 @default.
- W2963501221 hasConceptScore W2963501221C185592680 @default.
- W2963501221 hasConceptScore W2963501221C23224414 @default.
- W2963501221 hasConceptScore W2963501221C39890363 @default.
- W2963501221 hasConceptScore W2963501221C41008148 @default.
- W2963501221 hasConceptScore W2963501221C500882744 @default.
- W2963501221 hasConceptScore W2963501221C95623464 @default.
- W2963501221 hasIssue "4" @default.
- W2963501221 hasLocation W29635012211 @default.
- W2963501221 hasLocation W29635012212 @default.
- W2963501221 hasLocation W29635012213 @default.
- W2963501221 hasOpenAccess W2963501221 @default.
- W2963501221 hasPrimaryLocation W29635012211 @default.
- W2963501221 hasRelatedWork W1999172146 @default.
- W2963501221 hasRelatedWork W2003994472 @default.
- W2963501221 hasRelatedWork W2106082168 @default.
- W2963501221 hasRelatedWork W2107086631 @default.
- W2963501221 hasRelatedWork W2250400964 @default.
- W2963501221 hasRelatedWork W2563096758 @default.
- W2963501221 hasRelatedWork W2998926059 @default.
- W2963501221 hasRelatedWork W3003379904 @default.
- W2963501221 hasRelatedWork W4312492369 @default.
- W2963501221 hasRelatedWork W4386053843 @default.
- W2963501221 hasVolume "84" @default.
- W2963501221 isParatext "false" @default.
- W2963501221 isRetracted "false" @default.
- W2963501221 magId "2963501221" @default.
- W2963501221 workType "article" @default.