Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963503770> ?p ?o ?g. }
- W2963503770 endingPage "677" @default.
- W2963503770 startingPage "646" @default.
- W2963503770 abstract "Abstract This paper studies non-separable models with a continuous treatment when the dimension of the control variables is high and potentially larger than the effective sample size. We propose a three-step estimation procedure to estimate the average, quantile, and marginal treatment effects. In the first stage we estimate the conditional mean, distribution, and density objects by penalized local least squares, penalized local maximum likelihood estimation, and numerical differentiation, respectively, where control variables are selected via a localized method of L 1 -penalization at each value of the continuous treatment. In the second stage we estimate the average and marginal distribution of the potential outcome via the plug-in principle. In the third stage, we estimate the quantile and marginal treatment effects by inverting the estimated distribution function and using the local linear regression, respectively. We study the asymptotic properties of these estimators and propose a weighted-bootstrap method for inference. Using simulated and real datasets, we demonstrate that the proposed estimators perform well in finite samples." @default.
- W2963503770 created "2019-07-30" @default.
- W2963503770 creator A5025033207 @default.
- W2963503770 creator A5044007453 @default.
- W2963503770 creator A5051199663 @default.
- W2963503770 date "2019-10-01" @default.
- W2963503770 modified "2023-10-17" @default.
- W2963503770 title "Non-separable models with high-dimensional data" @default.
- W2963503770 cites W1520595697 @default.
- W2963503770 cites W1553826787 @default.
- W2963503770 cites W1568329098 @default.
- W2963503770 cites W1582567370 @default.
- W2963503770 cites W1886275324 @default.
- W2963503770 cites W1937828084 @default.
- W2963503770 cites W1977742607 @default.
- W2963503770 cites W1977964190 @default.
- W2963503770 cites W1989711934 @default.
- W2963503770 cites W1989927704 @default.
- W2963503770 cites W1996009000 @default.
- W2963503770 cites W1998833647 @default.
- W2963503770 cites W2014373672 @default.
- W2963503770 cites W2022450888 @default.
- W2963503770 cites W2050419204 @default.
- W2963503770 cites W2073767661 @default.
- W2963503770 cites W2079597004 @default.
- W2963503770 cites W2090503746 @default.
- W2963503770 cites W2091537095 @default.
- W2963503770 cites W2097191180 @default.
- W2963503770 cites W2100532505 @default.
- W2963503770 cites W2101296780 @default.
- W2963503770 cites W2105171386 @default.
- W2963503770 cites W2111388513 @default.
- W2963503770 cites W2112999503 @default.
- W2963503770 cites W2116581043 @default.
- W2963503770 cites W2120846249 @default.
- W2963503770 cites W2126330786 @default.
- W2963503770 cites W2133479700 @default.
- W2963503770 cites W2134901991 @default.
- W2963503770 cites W2145684290 @default.
- W2963503770 cites W2148511094 @default.
- W2963503770 cites W2150178984 @default.
- W2963503770 cites W2150291618 @default.
- W2963503770 cites W2152092498 @default.
- W2963503770 cites W2152343337 @default.
- W2963503770 cites W2154296347 @default.
- W2963503770 cites W2159317620 @default.
- W2963503770 cites W2163162137 @default.
- W2963503770 cites W2208550830 @default.
- W2963503770 cites W2305754340 @default.
- W2963503770 cites W2308122693 @default.
- W2963503770 cites W2320409419 @default.
- W2963503770 cites W2328212019 @default.
- W2963503770 cites W2583860259 @default.
- W2963503770 cites W2763021048 @default.
- W2963503770 cites W2765398882 @default.
- W2963503770 cites W2883711290 @default.
- W2963503770 cites W2949148940 @default.
- W2963503770 cites W2950845368 @default.
- W2963503770 cites W2951225967 @default.
- W2963503770 cites W2952150717 @default.
- W2963503770 cites W2952902916 @default.
- W2963503770 cites W2953122540 @default.
- W2963503770 cites W2963629082 @default.
- W2963503770 cites W2964331163 @default.
- W2963503770 cites W3102844537 @default.
- W2963503770 cites W3107395912 @default.
- W2963503770 cites W3122193054 @default.
- W2963503770 cites W3122967851 @default.
- W2963503770 cites W3123436326 @default.
- W2963503770 cites W3125188740 @default.
- W2963503770 cites W3140138476 @default.
- W2963503770 cites W4239679701 @default.
- W2963503770 doi "https://doi.org/10.1016/j.jeconom.2019.06.004" @default.
- W2963503770 hasPublicationYear "2019" @default.
- W2963503770 type Work @default.
- W2963503770 sameAs 2963503770 @default.
- W2963503770 citedByCount "10" @default.
- W2963503770 countsByYear W29635037702018 @default.
- W2963503770 countsByYear W29635037702020 @default.
- W2963503770 countsByYear W29635037702021 @default.
- W2963503770 countsByYear W29635037702022 @default.
- W2963503770 countsByYear W29635037702023 @default.
- W2963503770 crossrefType "journal-article" @default.
- W2963503770 hasAuthorship W2963503770A5025033207 @default.
- W2963503770 hasAuthorship W2963503770A5044007453 @default.
- W2963503770 hasAuthorship W2963503770A5051199663 @default.
- W2963503770 hasBestOaLocation W29635037702 @default.
- W2963503770 hasConcept C134306372 @default.
- W2963503770 hasConcept C149782125 @default.
- W2963503770 hasConcept C28826006 @default.
- W2963503770 hasConcept C33923547 @default.
- W2963503770 hasConcept C41008148 @default.
- W2963503770 hasConcept C70710897 @default.
- W2963503770 hasConceptScore W2963503770C134306372 @default.
- W2963503770 hasConceptScore W2963503770C149782125 @default.
- W2963503770 hasConceptScore W2963503770C28826006 @default.
- W2963503770 hasConceptScore W2963503770C33923547 @default.
- W2963503770 hasConceptScore W2963503770C41008148 @default.