Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963563735> ?p ?o ?g. }
- W2963563735 abstract "Pre-trained word embeddings learned from unlabeled text have become a standard component of neural network architectures for NLP tasks. However, in most cases, the recurrent network that operates on word-level representations to produce context sensitive representations is trained on relatively little labeled data. In this paper, we demonstrate a general semi-supervised approach for adding pretrained context embeddings from bidirectional language models to NLP systems and apply it to sequence labeling tasks. We evaluate our model on two standard datasets for named entity recognition (NER) and chunking, and in both cases achieve state of the art results, surpassing previous systems that use other forms of transfer or joint learning with additional labeled data and task specific gazetteers." @default.
- W2963563735 created "2019-07-30" @default.
- W2963563735 creator A5000366883 @default.
- W2963563735 creator A5016370551 @default.
- W2963563735 creator A5038616026 @default.
- W2963563735 creator A5044250030 @default.
- W2963563735 date "2017-01-01" @default.
- W2963563735 modified "2023-10-12" @default.
- W2963563735 title "Semi-supervised sequence tagging with bidirectional language models" @default.
- W2963563735 cites W141372029 @default.
- W2963563735 cites W14230040 @default.
- W2963563735 cites W1486649854 @default.
- W2963563735 cites W1539309091 @default.
- W2963563735 cites W1579429723 @default.
- W2963563735 cites W165656722 @default.
- W2963563735 cites W1753482797 @default.
- W2963563735 cites W179875071 @default.
- W2963563735 cites W1916559533 @default.
- W2963563735 cites W1951216520 @default.
- W2963563735 cites W2004763266 @default.
- W2963563735 cites W2008652694 @default.
- W2963563735 cites W2048679005 @default.
- W2963563735 cites W2064675550 @default.
- W2963563735 cites W2097089247 @default.
- W2963563735 cites W2098921539 @default.
- W2963563735 cites W2099153428 @default.
- W2963563735 cites W2115780499 @default.
- W2963563735 cites W2131744502 @default.
- W2963563735 cites W2132339004 @default.
- W2963563735 cites W2144578941 @default.
- W2963563735 cites W2147880316 @default.
- W2963563735 cites W2153579005 @default.
- W2963563735 cites W2158899491 @default.
- W2963563735 cites W2172251087 @default.
- W2963563735 cites W2250539671 @default.
- W2963563735 cites W2251559320 @default.
- W2963563735 cites W2251682575 @default.
- W2963563735 cites W2259472270 @default.
- W2963563735 cites W2293634267 @default.
- W2963563735 cites W2296283641 @default.
- W2963563735 cites W2507974895 @default.
- W2963563735 cites W2516255829 @default.
- W2963563735 cites W2549835527 @default.
- W2963563735 cites W2604986524 @default.
- W2963563735 cites W2951941802 @default.
- W2963563735 cites W2963625095 @default.
- W2963563735 cites W2963804993 @default.
- W2963563735 cites W2964121744 @default.
- W2963563735 cites W2964199361 @default.
- W2963563735 cites W1711224405 @default.
- W2963563735 doi "https://doi.org/10.18653/v1/p17-1161" @default.
- W2963563735 hasPublicationYear "2017" @default.
- W2963563735 type Work @default.
- W2963563735 sameAs 2963563735 @default.
- W2963563735 citedByCount "415" @default.
- W2963563735 countsByYear W29635637352017 @default.
- W2963563735 countsByYear W29635637352018 @default.
- W2963563735 countsByYear W29635637352019 @default.
- W2963563735 countsByYear W29635637352020 @default.
- W2963563735 countsByYear W29635637352021 @default.
- W2963563735 countsByYear W29635637352022 @default.
- W2963563735 countsByYear W29635637352023 @default.
- W2963563735 crossrefType "proceedings-article" @default.
- W2963563735 hasAuthorship W2963563735A5000366883 @default.
- W2963563735 hasAuthorship W2963563735A5016370551 @default.
- W2963563735 hasAuthorship W2963563735A5038616026 @default.
- W2963563735 hasAuthorship W2963563735A5044250030 @default.
- W2963563735 hasBestOaLocation W29635637351 @default.
- W2963563735 hasConcept C137293760 @default.
- W2963563735 hasConcept C138885662 @default.
- W2963563735 hasConcept C147168706 @default.
- W2963563735 hasConcept C150899416 @default.
- W2963563735 hasConcept C151730666 @default.
- W2963563735 hasConcept C152565575 @default.
- W2963563735 hasConcept C154945302 @default.
- W2963563735 hasConcept C162324750 @default.
- W2963563735 hasConcept C187736073 @default.
- W2963563735 hasConcept C203357204 @default.
- W2963563735 hasConcept C204321447 @default.
- W2963563735 hasConcept C2778112365 @default.
- W2963563735 hasConcept C2779135771 @default.
- W2963563735 hasConcept C2779343474 @default.
- W2963563735 hasConcept C2780451532 @default.
- W2963563735 hasConcept C35639132 @default.
- W2963563735 hasConcept C41008148 @default.
- W2963563735 hasConcept C41895202 @default.
- W2963563735 hasConcept C50644808 @default.
- W2963563735 hasConcept C54355233 @default.
- W2963563735 hasConcept C86803240 @default.
- W2963563735 hasConcept C90805587 @default.
- W2963563735 hasConceptScore W2963563735C137293760 @default.
- W2963563735 hasConceptScore W2963563735C138885662 @default.
- W2963563735 hasConceptScore W2963563735C147168706 @default.
- W2963563735 hasConceptScore W2963563735C150899416 @default.
- W2963563735 hasConceptScore W2963563735C151730666 @default.
- W2963563735 hasConceptScore W2963563735C152565575 @default.
- W2963563735 hasConceptScore W2963563735C154945302 @default.
- W2963563735 hasConceptScore W2963563735C162324750 @default.
- W2963563735 hasConceptScore W2963563735C187736073 @default.
- W2963563735 hasConceptScore W2963563735C203357204 @default.