Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963574614> ?p ?o ?g. }
- W2963574614 abstract "Existing person re-identification benchmarks and methods mainly focus on matching cropped pedestrian images between queries and candidates. However, it is different from real-world scenarios where the annotations of pedestrian bounding boxes are unavailable and the target person needs to be searched from a gallery of whole scene images. To close the gap, we propose a new deep learning framework for person search. Instead of breaking it down into two separate tasks—pedestrian detection and person re-identification, we jointly handle both aspects in a single convolutional neural network. An Online Instance Matching (OIM) loss function is proposed to train the network effectively, which is scalable to datasets with numerous identities. To validate our approach, we collect and annotate a large-scale benchmark dataset for person search. It contains 18,184 images, 8,432 identities, and 96,143 pedestrian bounding boxes. Experiments show that our framework outperforms other separate approaches, and the proposed OIM loss function converges much faster and better than the conventional Softmax loss." @default.
- W2963574614 created "2019-07-30" @default.
- W2963574614 creator A5003676104 @default.
- W2963574614 creator A5058965019 @default.
- W2963574614 creator A5061084605 @default.
- W2963574614 creator A5075452279 @default.
- W2963574614 creator A5079410647 @default.
- W2963574614 date "2017-07-01" @default.
- W2963574614 modified "2023-10-09" @default.
- W2963574614 title "Joint Detection and Identification Feature Learning for Person Search" @default.
- W2963574614 cites W1475617732 @default.
- W2963574614 cites W1491879279 @default.
- W2963574614 cites W1536680647 @default.
- W2963574614 cites W1596233070 @default.
- W2963574614 cites W1709635438 @default.
- W2963574614 cites W1903127635 @default.
- W2963574614 cites W1920259731 @default.
- W2963574614 cites W1928419358 @default.
- W2963574614 cites W1949591461 @default.
- W2963574614 cites W1976818984 @default.
- W2963574614 cites W1982925187 @default.
- W2963574614 cites W1991452654 @default.
- W2963574614 cites W1994623790 @default.
- W2963574614 cites W2046835352 @default.
- W2963574614 cites W2047632871 @default.
- W2963574614 cites W2068042582 @default.
- W2963574614 cites W2074777933 @default.
- W2963574614 cites W2085161844 @default.
- W2963574614 cites W2096306138 @default.
- W2963574614 cites W2098556421 @default.
- W2963574614 cites W2098807270 @default.
- W2963574614 cites W2107475454 @default.
- W2963574614 cites W2125556102 @default.
- W2963574614 cites W2131255818 @default.
- W2963574614 cites W2139763424 @default.
- W2963574614 cites W2155893237 @default.
- W2963574614 cites W2168356304 @default.
- W2963574614 cites W2194775991 @default.
- W2963574614 cites W2204750386 @default.
- W2963574614 cites W2220271458 @default.
- W2963574614 cites W2235916736 @default.
- W2963574614 cites W2342611082 @default.
- W2963574614 cites W2467139031 @default.
- W2963574614 cites W2511791013 @default.
- W2963574614 cites W345900524 @default.
- W2963574614 doi "https://doi.org/10.1109/cvpr.2017.360" @default.
- W2963574614 hasPublicationYear "2017" @default.
- W2963574614 type Work @default.
- W2963574614 sameAs 2963574614 @default.
- W2963574614 citedByCount "613" @default.
- W2963574614 countsByYear W29635746142016 @default.
- W2963574614 countsByYear W29635746142017 @default.
- W2963574614 countsByYear W29635746142018 @default.
- W2963574614 countsByYear W29635746142019 @default.
- W2963574614 countsByYear W29635746142020 @default.
- W2963574614 countsByYear W29635746142021 @default.
- W2963574614 countsByYear W29635746142022 @default.
- W2963574614 countsByYear W29635746142023 @default.
- W2963574614 crossrefType "proceedings-article" @default.
- W2963574614 hasAuthorship W2963574614A5003676104 @default.
- W2963574614 hasAuthorship W2963574614A5058965019 @default.
- W2963574614 hasAuthorship W2963574614A5061084605 @default.
- W2963574614 hasAuthorship W2963574614A5075452279 @default.
- W2963574614 hasAuthorship W2963574614A5079410647 @default.
- W2963574614 hasBestOaLocation W29635746142 @default.
- W2963574614 hasConcept C105795698 @default.
- W2963574614 hasConcept C108583219 @default.
- W2963574614 hasConcept C116834253 @default.
- W2963574614 hasConcept C119857082 @default.
- W2963574614 hasConcept C120665830 @default.
- W2963574614 hasConcept C121332964 @default.
- W2963574614 hasConcept C127413603 @default.
- W2963574614 hasConcept C13280743 @default.
- W2963574614 hasConcept C138885662 @default.
- W2963574614 hasConcept C153180895 @default.
- W2963574614 hasConcept C154945302 @default.
- W2963574614 hasConcept C165064840 @default.
- W2963574614 hasConcept C185798385 @default.
- W2963574614 hasConcept C188441871 @default.
- W2963574614 hasConcept C192209626 @default.
- W2963574614 hasConcept C205649164 @default.
- W2963574614 hasConcept C22212356 @default.
- W2963574614 hasConcept C2776151529 @default.
- W2963574614 hasConcept C2776401178 @default.
- W2963574614 hasConcept C2777113093 @default.
- W2963574614 hasConcept C2780156472 @default.
- W2963574614 hasConcept C33923547 @default.
- W2963574614 hasConcept C41008148 @default.
- W2963574614 hasConcept C41895202 @default.
- W2963574614 hasConcept C48044578 @default.
- W2963574614 hasConcept C59404180 @default.
- W2963574614 hasConcept C59822182 @default.
- W2963574614 hasConcept C63584917 @default.
- W2963574614 hasConcept C77088390 @default.
- W2963574614 hasConcept C81363708 @default.
- W2963574614 hasConcept C86803240 @default.
- W2963574614 hasConceptScore W2963574614C105795698 @default.
- W2963574614 hasConceptScore W2963574614C108583219 @default.
- W2963574614 hasConceptScore W2963574614C116834253 @default.
- W2963574614 hasConceptScore W2963574614C119857082 @default.