Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963587759> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2963587759 endingPage "728" @default.
- W2963587759 startingPage "720" @default.
- W2963587759 abstract "Copyright © 2019 by SIAM. High dimensional data and systems with many degrees of freedom are often characterized by covariance matrices. In this paper, we consider the problem of simultaneously estimating the dimension of the principal (dominant) subspace of these covariance matrices and obtaining an approximation to the subspace. This problem arises in the popular principal component analysis (PCA), and in many applications of machine learning, data analysis, signal and image processing, and others. We first present a novel method for estimating the dimension of the principal subspace. We then show how this method can be coupled with a Krylov subspace method to simultaneously estimate the dimension and obtain an approximation to the subspace. The dimension estimation is achieved at no additional cost. The proposed method operates on a model selection framework, where the novel selection criterion is derived based on random matrix perturbation theory ideas. We present theoretical analyses which (a) show that the proposed method achieves strong consistency (i.e., yields optimal solution as the number of data-points n → ∞), and (b) analyze conditions for exact dimension estimation in the finite n case. Using recent results, we show that our algorithm also yields near optimal PCA. The proposed method avoids forming the sample covariance matrix (associated with the data) explicitly and computing the complete eigen-decomposition. Therefore, the method is inexpensive, which is particularly advantageous in modern data applications where the covariance matrices can be very large. Numerical experiments illustrate the performance of the proposed method in various applications." @default.
- W2963587759 created "2019-07-30" @default.
- W2963587759 creator A5016419713 @default.
- W2963587759 creator A5084681382 @default.
- W2963587759 creator A5091108132 @default.
- W2963587759 date "2019-05-06" @default.
- W2963587759 modified "2023-10-16" @default.
- W2963587759 title "Find the dimension that counts: Fast dimension estimation and Krylov PCA" @default.
- W2963587759 doi "https://doi.org/10.1137/1.9781611975673.81" @default.
- W2963587759 hasPublicationYear "2019" @default.
- W2963587759 type Work @default.
- W2963587759 sameAs 2963587759 @default.
- W2963587759 citedByCount "3" @default.
- W2963587759 countsByYear W29635877592020 @default.
- W2963587759 countsByYear W29635877592021 @default.
- W2963587759 countsByYear W29635877592022 @default.
- W2963587759 crossrefType "book-chapter" @default.
- W2963587759 hasAuthorship W2963587759A5016419713 @default.
- W2963587759 hasAuthorship W2963587759A5084681382 @default.
- W2963587759 hasAuthorship W2963587759A5091108132 @default.
- W2963587759 hasBestOaLocation W29635877591 @default.
- W2963587759 hasConcept C121332964 @default.
- W2963587759 hasConcept C130187892 @default.
- W2963587759 hasConcept C162324750 @default.
- W2963587759 hasConcept C187736073 @default.
- W2963587759 hasConcept C202444582 @default.
- W2963587759 hasConcept C2909746369 @default.
- W2963587759 hasConcept C33676613 @default.
- W2963587759 hasConcept C33923547 @default.
- W2963587759 hasConcept C41008148 @default.
- W2963587759 hasConcept C62520636 @default.
- W2963587759 hasConcept C96250715 @default.
- W2963587759 hasConceptScore W2963587759C121332964 @default.
- W2963587759 hasConceptScore W2963587759C130187892 @default.
- W2963587759 hasConceptScore W2963587759C162324750 @default.
- W2963587759 hasConceptScore W2963587759C187736073 @default.
- W2963587759 hasConceptScore W2963587759C202444582 @default.
- W2963587759 hasConceptScore W2963587759C2909746369 @default.
- W2963587759 hasConceptScore W2963587759C33676613 @default.
- W2963587759 hasConceptScore W2963587759C33923547 @default.
- W2963587759 hasConceptScore W2963587759C41008148 @default.
- W2963587759 hasConceptScore W2963587759C62520636 @default.
- W2963587759 hasConceptScore W2963587759C96250715 @default.
- W2963587759 hasLocation W29635877591 @default.
- W2963587759 hasLocation W29635877592 @default.
- W2963587759 hasOpenAccess W2963587759 @default.
- W2963587759 hasPrimaryLocation W29635877591 @default.
- W2963587759 hasRelatedWork W1981482516 @default.
- W2963587759 hasRelatedWork W1990275555 @default.
- W2963587759 hasRelatedWork W2005930910 @default.
- W2963587759 hasRelatedWork W2049220128 @default.
- W2963587759 hasRelatedWork W2080397230 @default.
- W2963587759 hasRelatedWork W2081628062 @default.
- W2963587759 hasRelatedWork W2085026217 @default.
- W2963587759 hasRelatedWork W2170802669 @default.
- W2963587759 hasRelatedWork W2837527297 @default.
- W2963587759 hasRelatedWork W2963659792 @default.
- W2963587759 isParatext "false" @default.
- W2963587759 isRetracted "false" @default.
- W2963587759 magId "2963587759" @default.
- W2963587759 workType "book-chapter" @default.