Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963639449> ?p ?o ?g. }
- W2963639449 abstract "In this paper, we introduce a new dataset, Kimia Path24, for image classification and retrieval in digital pathology. We use the whole scan images of 24 different tissue textures to generate 1,325 test patches of size 1000x1000 (0.5mm x 0.5mm). Training data can be generated according to preferences of algorithm designer and can range from approximately 27,000 to over 50,000 patches if the preset parameters are adopted. We propose a compound patch-and-scan accuracy measurement that makes achieving high accuracies quite challenging. In addition, we set the benchmarking line by applying LBP, dictionary approach and convolutional neural nets (CNNs) and report their results. The highest accuracy was 41.80% for CNN." @default.
- W2963639449 created "2019-07-30" @default.
- W2963639449 creator A5028824188 @default.
- W2963639449 creator A5029620888 @default.
- W2963639449 creator A5038566332 @default.
- W2963639449 creator A5039613959 @default.
- W2963639449 creator A5041584243 @default.
- W2963639449 creator A5069849570 @default.
- W2963639449 creator A5077727968 @default.
- W2963639449 creator A5082664845 @default.
- W2963639449 date "2017-07-01" @default.
- W2963639449 modified "2023-10-16" @default.
- W2963639449 title "Classification and Retrieval of Digital Pathology Scans: A New Dataset" @default.
- W2963639449 cites W1480966043 @default.
- W2963639449 cites W1548827537 @default.
- W2963639449 cites W1969809326 @default.
- W2963639449 cites W1974195684 @default.
- W2963639449 cites W1979817911 @default.
- W2963639449 cites W2000429190 @default.
- W2963639449 cites W2006302594 @default.
- W2963639449 cites W2006870848 @default.
- W2963639449 cites W2036924016 @default.
- W2963639449 cites W2069568152 @default.
- W2963639449 cites W2073528853 @default.
- W2963639449 cites W2076450712 @default.
- W2963639449 cites W2080743883 @default.
- W2963639449 cites W2085579853 @default.
- W2963639449 cites W2089575713 @default.
- W2963639449 cites W2097290407 @default.
- W2963639449 cites W2103243046 @default.
- W2963639449 cites W2111574404 @default.
- W2963639449 cites W2112796928 @default.
- W2963639449 cites W2117815663 @default.
- W2963639449 cites W2124386111 @default.
- W2963639449 cites W2126047962 @default.
- W2963639449 cites W2144223474 @default.
- W2963639449 cites W2145908554 @default.
- W2963639449 cites W2149684865 @default.
- W2963639449 cites W2153635508 @default.
- W2963639449 cites W2154813452 @default.
- W2963639449 cites W2162915993 @default.
- W2963639449 cites W2163352848 @default.
- W2963639449 cites W2164582755 @default.
- W2963639449 cites W2168183040 @default.
- W2963639449 cites W2200290088 @default.
- W2963639449 cites W2470965540 @default.
- W2963639449 cites W2962868687 @default.
- W2963639449 doi "https://doi.org/10.1109/cvprw.2017.106" @default.
- W2963639449 hasPublicationYear "2017" @default.
- W2963639449 type Work @default.
- W2963639449 sameAs 2963639449 @default.
- W2963639449 citedByCount "37" @default.
- W2963639449 countsByYear W29636394492017 @default.
- W2963639449 countsByYear W29636394492018 @default.
- W2963639449 countsByYear W29636394492019 @default.
- W2963639449 countsByYear W29636394492020 @default.
- W2963639449 countsByYear W29636394492021 @default.
- W2963639449 countsByYear W29636394492022 @default.
- W2963639449 countsByYear W29636394492023 @default.
- W2963639449 crossrefType "proceedings-article" @default.
- W2963639449 hasAuthorship W2963639449A5028824188 @default.
- W2963639449 hasAuthorship W2963639449A5029620888 @default.
- W2963639449 hasAuthorship W2963639449A5038566332 @default.
- W2963639449 hasAuthorship W2963639449A5039613959 @default.
- W2963639449 hasAuthorship W2963639449A5041584243 @default.
- W2963639449 hasAuthorship W2963639449A5069849570 @default.
- W2963639449 hasAuthorship W2963639449A5077727968 @default.
- W2963639449 hasAuthorship W2963639449A5082664845 @default.
- W2963639449 hasBestOaLocation W29636394492 @default.
- W2963639449 hasConcept C115961682 @default.
- W2963639449 hasConcept C144133560 @default.
- W2963639449 hasConcept C153180895 @default.
- W2963639449 hasConcept C154945302 @default.
- W2963639449 hasConcept C159985019 @default.
- W2963639449 hasConcept C162853370 @default.
- W2963639449 hasConcept C1667742 @default.
- W2963639449 hasConcept C169903167 @default.
- W2963639449 hasConcept C177264268 @default.
- W2963639449 hasConcept C192562407 @default.
- W2963639449 hasConcept C199360897 @default.
- W2963639449 hasConcept C204323151 @default.
- W2963639449 hasConcept C2777522853 @default.
- W2963639449 hasConcept C31972630 @default.
- W2963639449 hasConcept C41008148 @default.
- W2963639449 hasConcept C42781572 @default.
- W2963639449 hasConcept C51632099 @default.
- W2963639449 hasConcept C58489278 @default.
- W2963639449 hasConcept C75294576 @default.
- W2963639449 hasConcept C81363708 @default.
- W2963639449 hasConcept C86251818 @default.
- W2963639449 hasConcept C9417928 @default.
- W2963639449 hasConceptScore W2963639449C115961682 @default.
- W2963639449 hasConceptScore W2963639449C144133560 @default.
- W2963639449 hasConceptScore W2963639449C153180895 @default.
- W2963639449 hasConceptScore W2963639449C154945302 @default.
- W2963639449 hasConceptScore W2963639449C159985019 @default.
- W2963639449 hasConceptScore W2963639449C162853370 @default.
- W2963639449 hasConceptScore W2963639449C1667742 @default.
- W2963639449 hasConceptScore W2963639449C169903167 @default.
- W2963639449 hasConceptScore W2963639449C177264268 @default.