Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963640910> ?p ?o ?g. }
- W2963640910 endingPage "1336" @default.
- W2963640910 startingPage "1303" @default.
- W2963640910 abstract "The paper outlines a general approach to deriving quasi-steady-state approximations (QSSAs) of the stochastic reaction networks describing the Michaelis–Menten enzyme kinetics. In particular, it explains how different sets of assumptions about chemical species abundance and reaction rates lead to the standard QSSA, the total QSSA, and the reverse QSSA. These three QSSAs have been widely studied in the literature in deterministic ordinary differential equation settings, and several sets of conditions for their validity have been proposed. With the help of the multiscaling techniques introduced in Ball et al. (Ann Appl Probab 16(4):1925–1961, 2006), Kang and Kurtz (Ann Appl Probab 23(2):529–583, 2013), it is seen that the conditions for deterministic QSSAs largely agree (with some exceptions) with the ones for stochastic QSSAs in the large-volume limits. The paper also illustrates how the stochastic QSSA approach may be extended to more complex stochastic kinetic networks like, for instance, the enzyme–substrate–inhibitor system." @default.
- W2963640910 created "2019-07-30" @default.
- W2963640910 creator A5069452309 @default.
- W2963640910 creator A5070544702 @default.
- W2963640910 creator A5072557914 @default.
- W2963640910 creator A5091011842 @default.
- W2963640910 date "2019-02-12" @default.
- W2963640910 modified "2023-10-03" @default.
- W2963640910 title "Quasi-Steady-State Approximations Derived from the Stochastic Model of Enzyme Kinetics" @default.
- W2963640910 cites W1581071628 @default.
- W2963640910 cites W1619942222 @default.
- W2963640910 cites W172803389 @default.
- W2963640910 cites W1869042642 @default.
- W2963640910 cites W1882735145 @default.
- W2963640910 cites W1963906834 @default.
- W2963640910 cites W1968215901 @default.
- W2963640910 cites W1973890190 @default.
- W2963640910 cites W1975553365 @default.
- W2963640910 cites W1976443948 @default.
- W2963640910 cites W1981467491 @default.
- W2963640910 cites W1992179397 @default.
- W2963640910 cites W1994500037 @default.
- W2963640910 cites W1995843787 @default.
- W2963640910 cites W1999028875 @default.
- W2963640910 cites W2002162541 @default.
- W2963640910 cites W2002164453 @default.
- W2963640910 cites W2002919709 @default.
- W2963640910 cites W2006758451 @default.
- W2963640910 cites W2023145868 @default.
- W2963640910 cites W2024283669 @default.
- W2963640910 cites W2040542322 @default.
- W2963640910 cites W2053156756 @default.
- W2963640910 cites W2058343991 @default.
- W2963640910 cites W20631466 @default.
- W2963640910 cites W2067160012 @default.
- W2963640910 cites W2073229378 @default.
- W2963640910 cites W2078119846 @default.
- W2963640910 cites W2095889937 @default.
- W2963640910 cites W2096065176 @default.
- W2963640910 cites W2125979692 @default.
- W2963640910 cites W2155418451 @default.
- W2963640910 cites W2165977465 @default.
- W2963640910 cites W2174187976 @default.
- W2963640910 cites W2346910000 @default.
- W2963640910 cites W2408546946 @default.
- W2963640910 cites W2585592087 @default.
- W2963640910 cites W2609780203 @default.
- W2963640910 cites W2950586838 @default.
- W2963640910 cites W3097995899 @default.
- W2963640910 cites W3099675220 @default.
- W2963640910 cites W3102913460 @default.
- W2963640910 cites W3103091585 @default.
- W2963640910 cites W3104355884 @default.
- W2963640910 cites W3125980488 @default.
- W2963640910 cites W4213329537 @default.
- W2963640910 cites W568290811 @default.
- W2963640910 doi "https://doi.org/10.1007/s11538-019-00574-4" @default.
- W2963640910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30756234" @default.
- W2963640910 hasPublicationYear "2019" @default.
- W2963640910 type Work @default.
- W2963640910 sameAs 2963640910 @default.
- W2963640910 citedByCount "25" @default.
- W2963640910 countsByYear W29636409102019 @default.
- W2963640910 countsByYear W29636409102020 @default.
- W2963640910 countsByYear W29636409102021 @default.
- W2963640910 countsByYear W29636409102022 @default.
- W2963640910 countsByYear W29636409102023 @default.
- W2963640910 crossrefType "journal-article" @default.
- W2963640910 hasAuthorship W2963640910A5069452309 @default.
- W2963640910 hasAuthorship W2963640910A5070544702 @default.
- W2963640910 hasAuthorship W2963640910A5072557914 @default.
- W2963640910 hasAuthorship W2963640910A5091011842 @default.
- W2963640910 hasBestOaLocation W29636409102 @default.
- W2963640910 hasConcept C121332964 @default.
- W2963640910 hasConcept C121864883 @default.
- W2963640910 hasConcept C134306372 @default.
- W2963640910 hasConcept C181199279 @default.
- W2963640910 hasConcept C185592680 @default.
- W2963640910 hasConcept C28826006 @default.
- W2963640910 hasConcept C33923547 @default.
- W2963640910 hasConcept C41183919 @default.
- W2963640910 hasConcept C51544822 @default.
- W2963640910 hasConcept C51955184 @default.
- W2963640910 hasConcept C55493867 @default.
- W2963640910 hasConcept C56856141 @default.
- W2963640910 hasConcept C78045399 @default.
- W2963640910 hasConceptScore W2963640910C121332964 @default.
- W2963640910 hasConceptScore W2963640910C121864883 @default.
- W2963640910 hasConceptScore W2963640910C134306372 @default.
- W2963640910 hasConceptScore W2963640910C181199279 @default.
- W2963640910 hasConceptScore W2963640910C185592680 @default.
- W2963640910 hasConceptScore W2963640910C28826006 @default.
- W2963640910 hasConceptScore W2963640910C33923547 @default.
- W2963640910 hasConceptScore W2963640910C41183919 @default.
- W2963640910 hasConceptScore W2963640910C51544822 @default.
- W2963640910 hasConceptScore W2963640910C51955184 @default.
- W2963640910 hasConceptScore W2963640910C55493867 @default.
- W2963640910 hasConceptScore W2963640910C56856141 @default.