Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963650207> ?p ?o ?g. }
- W2963650207 endingPage "110" @default.
- W2963650207 startingPage "93" @default.
- W2963650207 abstract "When can reliable inference be drawn in the “Big Data” context? This paper presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large-scale inference. In large-scale data applications like genomics, connectomics, and eco-informatics, the data set is often variable rich but sample starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than the number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for “Big Data.” Sample complexity, however, has received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; and 3) the purely high-dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high-dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. We demonstrate various regimes of correlation mining based on the unifying perspective of high-dimensional learning rates and sample complexity for different structured covariance models and different inference tasks." @default.
- W2963650207 created "2019-07-30" @default.
- W2963650207 creator A5077692655 @default.
- W2963650207 creator A5091424272 @default.
- W2963650207 date "2016-01-01" @default.
- W2963650207 modified "2023-10-15" @default.
- W2963650207 title "Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining" @default.
- W2963650207 cites W1511694993 @default.
- W2963650207 cites W1515333551 @default.
- W2963650207 cites W1535258871 @default.
- W2963650207 cites W1557486844 @default.
- W2963650207 cites W1564947197 @default.
- W2963650207 cites W1811660475 @default.
- W2963650207 cites W1965928820 @default.
- W2963650207 cites W1975427503 @default.
- W2963650207 cites W1976493872 @default.
- W2963650207 cites W1978238148 @default.
- W2963650207 cites W1979534464 @default.
- W2963650207 cites W1984614739 @default.
- W2963650207 cites W1985260835 @default.
- W2963650207 cites W1988543519 @default.
- W2963650207 cites W1990512452 @default.
- W2963650207 cites W1990948184 @default.
- W2963650207 cites W1993948873 @default.
- W2963650207 cites W1998219462 @default.
- W2963650207 cites W2001334414 @default.
- W2963650207 cites W2008091470 @default.
- W2963650207 cites W2016966976 @default.
- W2963650207 cites W2019841176 @default.
- W2963650207 cites W2019963883 @default.
- W2963650207 cites W2020519533 @default.
- W2963650207 cites W2020999234 @default.
- W2963650207 cites W2021472931 @default.
- W2963650207 cites W2021556180 @default.
- W2963650207 cites W2025450578 @default.
- W2963650207 cites W2029084939 @default.
- W2963650207 cites W2030330156 @default.
- W2963650207 cites W2034767804 @default.
- W2963650207 cites W2035072290 @default.
- W2963650207 cites W2042881543 @default.
- W2963650207 cites W2047870694 @default.
- W2963650207 cites W2050275369 @default.
- W2963650207 cites W2050834445 @default.
- W2963650207 cites W2050947563 @default.
- W2963650207 cites W2053565514 @default.
- W2963650207 cites W2054141820 @default.
- W2963650207 cites W2057535756 @default.
- W2963650207 cites W2057643324 @default.
- W2963650207 cites W2057765075 @default.
- W2963650207 cites W2059355691 @default.
- W2963650207 cites W2062125287 @default.
- W2963650207 cites W2066374935 @default.
- W2963650207 cites W2068943743 @default.
- W2963650207 cites W2068992779 @default.
- W2963650207 cites W2075694080 @default.
- W2963650207 cites W2077390566 @default.
- W2963650207 cites W2077813311 @default.
- W2963650207 cites W2078537874 @default.
- W2963650207 cites W2080403608 @default.
- W2963650207 cites W2081930221 @default.
- W2963650207 cites W2084840427 @default.
- W2963650207 cites W2091300140 @default.
- W2963650207 cites W2091982107 @default.
- W2963650207 cites W2095491050 @default.
- W2963650207 cites W2096164598 @default.
- W2963650207 cites W2099380913 @default.
- W2963650207 cites W2099579348 @default.
- W2963650207 cites W2103193999 @default.
- W2963650207 cites W2104475115 @default.
- W2963650207 cites W2108458053 @default.
- W2963650207 cites W2112829185 @default.
- W2963650207 cites W2114256390 @default.
- W2963650207 cites W2115335486 @default.
- W2963650207 cites W2116581043 @default.
- W2963650207 cites W2120078534 @default.
- W2963650207 cites W2124178852 @default.
- W2963650207 cites W2127300249 @default.
- W2963650207 cites W2129640939 @default.
- W2963650207 cites W2131801584 @default.
- W2963650207 cites W2132555912 @default.
- W2963650207 cites W2133380705 @default.
- W2963650207 cites W2134068681 @default.
- W2963650207 cites W2139549194 @default.
- W2963650207 cites W2141556672 @default.
- W2963650207 cites W2144158572 @default.
- W2963650207 cites W2145577744 @default.
- W2963650207 cites W2146693559 @default.
- W2963650207 cites W2154560360 @default.
- W2963650207 cites W2154791587 @default.
- W2963650207 cites W2158339409 @default.
- W2963650207 cites W2164306581 @default.
- W2963650207 cites W2165093166 @default.
- W2963650207 cites W2165408259 @default.
- W2963650207 cites W2165828377 @default.
- W2963650207 cites W2168210733 @default.
- W2963650207 cites W2170744156 @default.
- W2963650207 cites W2174160981 @default.
- W2963650207 cites W2207256614 @default.