Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963667024> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2963667024 endingPage "262" @default.
- W2963667024 startingPage "236" @default.
- W2963667024 abstract "Dengue is fast emerging pandemic-prone viral disease in many parts of the world. Dengue flourishes in urban areas, suburbs, and the countryside, but also affects more affluent neighborhoods in tropical and subtropical countries. Dengue is a mosquito-borne viral infection causing a severe flu-like illness and sometimes causing a potentially deadly complication called severe dengue. It is a major public health problem in India. Accurate and timely forecasts of dengue incidence in India are still lacking. In this chapter, the state-of-the-art machine learning algorithms are used to develop an accurate predictive model of dengue. Several machine learning algorithms are used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed, and it is found that the optimized SVR gives minimal RMSE 0.25. The classifiers are applied, and experiment results show that the extreme boost and random forest gives 93.65% accuracy." @default.
- W2963667024 created "2019-07-30" @default.
- W2963667024 creator A5000386615 @default.
- W2963667024 creator A5003324907 @default.
- W2963667024 creator A5009143486 @default.
- W2963667024 creator A5076095705 @default.
- W2963667024 date "2020-01-01" @default.
- W2963667024 modified "2023-10-14" @default.
- W2963667024 title "Trend and Predictive Analytics of Dengue Prevalence in Administrative Region" @default.
- W2963667024 cites W1591309314 @default.
- W2963667024 cites W2005093325 @default.
- W2963667024 cites W2139559890 @default.
- W2963667024 cites W2139811933 @default.
- W2963667024 cites W2399847652 @default.
- W2963667024 cites W2547340922 @default.
- W2963667024 cites W2597076454 @default.
- W2963667024 cites W2756467951 @default.
- W2963667024 cites W2763378230 @default.
- W2963667024 cites W2782228766 @default.
- W2963667024 cites W2783825033 @default.
- W2963667024 cites W2787271425 @default.
- W2963667024 cites W2790553682 @default.
- W2963667024 cites W2800543972 @default.
- W2963667024 cites W2801974413 @default.
- W2963667024 cites W2941246180 @default.
- W2963667024 cites W2961631520 @default.
- W2963667024 doi "https://doi.org/10.4018/978-1-5225-9902-9.ch013" @default.
- W2963667024 hasPublicationYear "2020" @default.
- W2963667024 type Work @default.
- W2963667024 sameAs 2963667024 @default.
- W2963667024 citedByCount "0" @default.
- W2963667024 crossrefType "book-chapter" @default.
- W2963667024 hasAuthorship W2963667024A5000386615 @default.
- W2963667024 hasAuthorship W2963667024A5003324907 @default.
- W2963667024 hasAuthorship W2963667024A5009143486 @default.
- W2963667024 hasAuthorship W2963667024A5076095705 @default.
- W2963667024 hasConcept C111472728 @default.
- W2963667024 hasConcept C119857082 @default.
- W2963667024 hasConcept C138885662 @default.
- W2963667024 hasConcept C142724271 @default.
- W2963667024 hasConcept C154945302 @default.
- W2963667024 hasConcept C159047783 @default.
- W2963667024 hasConcept C169258074 @default.
- W2963667024 hasConcept C205649164 @default.
- W2963667024 hasConcept C2524010 @default.
- W2963667024 hasConcept C2778136018 @default.
- W2963667024 hasConcept C2779134260 @default.
- W2963667024 hasConcept C2779635636 @default.
- W2963667024 hasConcept C3008058167 @default.
- W2963667024 hasConcept C33923547 @default.
- W2963667024 hasConcept C41008148 @default.
- W2963667024 hasConcept C524204448 @default.
- W2963667024 hasConcept C533803919 @default.
- W2963667024 hasConcept C61511704 @default.
- W2963667024 hasConcept C71924100 @default.
- W2963667024 hasConcept C89623803 @default.
- W2963667024 hasConceptScore W2963667024C111472728 @default.
- W2963667024 hasConceptScore W2963667024C119857082 @default.
- W2963667024 hasConceptScore W2963667024C138885662 @default.
- W2963667024 hasConceptScore W2963667024C142724271 @default.
- W2963667024 hasConceptScore W2963667024C154945302 @default.
- W2963667024 hasConceptScore W2963667024C159047783 @default.
- W2963667024 hasConceptScore W2963667024C169258074 @default.
- W2963667024 hasConceptScore W2963667024C205649164 @default.
- W2963667024 hasConceptScore W2963667024C2524010 @default.
- W2963667024 hasConceptScore W2963667024C2778136018 @default.
- W2963667024 hasConceptScore W2963667024C2779134260 @default.
- W2963667024 hasConceptScore W2963667024C2779635636 @default.
- W2963667024 hasConceptScore W2963667024C3008058167 @default.
- W2963667024 hasConceptScore W2963667024C33923547 @default.
- W2963667024 hasConceptScore W2963667024C41008148 @default.
- W2963667024 hasConceptScore W2963667024C524204448 @default.
- W2963667024 hasConceptScore W2963667024C533803919 @default.
- W2963667024 hasConceptScore W2963667024C61511704 @default.
- W2963667024 hasConceptScore W2963667024C71924100 @default.
- W2963667024 hasConceptScore W2963667024C89623803 @default.
- W2963667024 hasLocation W29636670241 @default.
- W2963667024 hasOpenAccess W2963667024 @default.
- W2963667024 hasPrimaryLocation W29636670241 @default.
- W2963667024 hasRelatedWork W10343215 @default.
- W2963667024 hasRelatedWork W10497269 @default.
- W2963667024 hasRelatedWork W11281141 @default.
- W2963667024 hasRelatedWork W1160303 @default.
- W2963667024 hasRelatedWork W14106814 @default.
- W2963667024 hasRelatedWork W3881979 @default.
- W2963667024 hasRelatedWork W4094401 @default.
- W2963667024 hasRelatedWork W6657373 @default.
- W2963667024 hasRelatedWork W7455383 @default.
- W2963667024 hasRelatedWork W8784877 @default.
- W2963667024 isParatext "false" @default.
- W2963667024 isRetracted "false" @default.
- W2963667024 magId "2963667024" @default.
- W2963667024 workType "book-chapter" @default.