Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963669331> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2963669331 abstract "Positron Emission Tomography (PET) is one of the most relevant medical imaging techniques utilized for cancer detection and tumor staging. The success of PET relies on the high sensitivity and accuracy to detect and quantify molecular probe concentrations, in the order of picomole/liter. Although there are several positron-emitting molecular probes available, the 18F-fludeoxyglucose (18F-FDG) contributes remarkably to the high PET specificity and sensitivity. Since the success of PET imaging is strongly connected to the 18F-FDG, this imaging technique is also known as FDG-PET. In FDG-PET imaging three elements are key: - the molecular probe, - a PET scanner, - and an image reconstruction algorithm. The molecular probe is the contrast enhancement agent, which is administrated to the patient and absorbed by the target volumes. The emitted radiation produced by electron-positron annihilation is detected by the PET scanner, and the detection information is utilized to reconstruct a volumetric probe distribution. In essence, a PET scanner is a large acquisition system composed of thousands of channels that detect coincident gamma-photons generated during electron-positron annihilations. Typically, a single detection channel is composed of a scintillation material and a photodetector. The scintillation material absorbs the gamma-energy and emits light photons that produce digital or analog signals in the photodetectors. Nowadays, novel silicon-based photodetectors known as silicon photomultipliers (SiPMs) have been adopted as the next-generation photodetectors for PET applications. In order to further improve the FDG-PET molecular sensitivity and specificity, next-generation instrumentation requires a more accurate time estimation of the detected gamma-photon. Since in time-of-flight (TOF) PET the reconstructed images have an improved signal-to-noise ratio (SNR), which depends on the gamma-photon timemark precision. Additionally, increasing the detection sensitivity improves the statistical quality of information utilized during the image reconstruction process. This thesis introduces the basic concepts of molecular imaging and the key elements of FDG-PET in chapters 1 and 2. A comprehensive theoretical analysis on the utilization of the scintillation light information for gamma-photon timemark estimation is presented in chapter 3. Several estimation methods, such as maximum-likelihood estimation (MLE) and best linear unbiased estimation (BLUE) are presented, as well as a performance comparison with respect to the Cramer-Rao lower bound. Additionally, a detailed study is performed to determine the conditions that allow to reach the Cramer-Rao lower bound. Currently, FDG-PET imaging equipment is not equally available worldwide and one of the reasons is the high costs involved. Often, the design and implementation of TOF-PET instrumentation requires application specific integrated circuit (ASIC) designs, which increases the complexity of the design and required long prototyping phases. Chapter 4 describes the design, implementation, and characterization of TOF-PET instrumentation based on off-the-shelf components, configurable time-to-digital converters (TDCs) implemented on field-programmable gate arrays (FPGAs), and analog SiPMs (A-SiPMs). The proposed solution achieves TOF precision with a full-flexible, fast-prototyping, and ASIC-less designs. Recently, digital SiPMs (D-SiPMs) emerged as a next-generation photodetector for PET applications. In particular, the multichannel digital SiPM (MD-SiPM) architecture integrates single-photon avalanche diodes (SPADs), TDCs, and a readout logic into a monolithic CMOS photodetector. This type of photodetector confines all the measurement devices and circuits within an integrated solution. Therefore, it allows a direct system integration of a large number of channels since only digital signals are required for its operation. However, D-SiPM research and development requires long development and integration cycles due to the high complexity involved. Chapter 5 describes an individual building block and full-system comprehensive analysis of a monolithic array of 18x9 MD-SiPMs. Additionally, it describes in detail the methods developed for multiple TDC systems. In chapter 6, the system integration of MD-SiPMs for building PET detector modules is explained. The challenges of utilizing complex photodetectors for building PET modules, attachment of scintillator matrices, and digital readout strategies are described in a comprehensive manner. Finally, a conclusion of the PET technologies investigated throughout this thesis is given. In addition, an outlook of newer detection methods based on Cherenkov-PET and the corresponding requirements and eventual advantages is discussed." @default.
- W2963669331 created "2019-07-30" @default.
- W2963669331 creator A5030524956 @default.
- W2963669331 date "2019-04-05" @default.
- W2963669331 modified "2023-09-23" @default.
- W2963669331 title "PET detector technologies for next-generation molecular imaging: From single-positron counting to single-photoelectron counting" @default.
- W2963669331 doi "https://doi.org/10.4233/uuid:427e3ce3-2b01-4fa0-9e80-bf0e9c033213" @default.
- W2963669331 hasPublicationYear "2019" @default.
- W2963669331 type Work @default.
- W2963669331 sameAs 2963669331 @default.
- W2963669331 citedByCount "0" @default.
- W2963669331 crossrefType "journal-article" @default.
- W2963669331 hasAuthorship W2963669331A5030524956 @default.
- W2963669331 hasConcept C102637530 @default.
- W2963669331 hasConcept C104335537 @default.
- W2963669331 hasConcept C113879476 @default.
- W2963669331 hasConcept C120665830 @default.
- W2963669331 hasConcept C121332964 @default.
- W2963669331 hasConcept C136339569 @default.
- W2963669331 hasConcept C147120987 @default.
- W2963669331 hasConcept C150903083 @default.
- W2963669331 hasConcept C161694136 @default.
- W2963669331 hasConcept C185544564 @default.
- W2963669331 hasConcept C192562407 @default.
- W2963669331 hasConcept C19527891 @default.
- W2963669331 hasConcept C202100949 @default.
- W2963669331 hasConcept C207001950 @default.
- W2963669331 hasConcept C23125352 @default.
- W2963669331 hasConcept C2775842073 @default.
- W2963669331 hasConcept C2779751349 @default.
- W2963669331 hasConcept C2780330291 @default.
- W2963669331 hasConcept C2781402376 @default.
- W2963669331 hasConcept C2989005 @default.
- W2963669331 hasConcept C49040817 @default.
- W2963669331 hasConcept C71924100 @default.
- W2963669331 hasConcept C86803240 @default.
- W2963669331 hasConcept C94915269 @default.
- W2963669331 hasConceptScore W2963669331C102637530 @default.
- W2963669331 hasConceptScore W2963669331C104335537 @default.
- W2963669331 hasConceptScore W2963669331C113879476 @default.
- W2963669331 hasConceptScore W2963669331C120665830 @default.
- W2963669331 hasConceptScore W2963669331C121332964 @default.
- W2963669331 hasConceptScore W2963669331C136339569 @default.
- W2963669331 hasConceptScore W2963669331C147120987 @default.
- W2963669331 hasConceptScore W2963669331C150903083 @default.
- W2963669331 hasConceptScore W2963669331C161694136 @default.
- W2963669331 hasConceptScore W2963669331C185544564 @default.
- W2963669331 hasConceptScore W2963669331C192562407 @default.
- W2963669331 hasConceptScore W2963669331C19527891 @default.
- W2963669331 hasConceptScore W2963669331C202100949 @default.
- W2963669331 hasConceptScore W2963669331C207001950 @default.
- W2963669331 hasConceptScore W2963669331C23125352 @default.
- W2963669331 hasConceptScore W2963669331C2775842073 @default.
- W2963669331 hasConceptScore W2963669331C2779751349 @default.
- W2963669331 hasConceptScore W2963669331C2780330291 @default.
- W2963669331 hasConceptScore W2963669331C2781402376 @default.
- W2963669331 hasConceptScore W2963669331C2989005 @default.
- W2963669331 hasConceptScore W2963669331C49040817 @default.
- W2963669331 hasConceptScore W2963669331C71924100 @default.
- W2963669331 hasConceptScore W2963669331C86803240 @default.
- W2963669331 hasConceptScore W2963669331C94915269 @default.
- W2963669331 hasLocation W29636693311 @default.
- W2963669331 hasOpenAccess W2963669331 @default.
- W2963669331 hasPrimaryLocation W29636693311 @default.
- W2963669331 hasRelatedWork W1171831391 @default.
- W2963669331 hasRelatedWork W1873112406 @default.
- W2963669331 hasRelatedWork W1997837201 @default.
- W2963669331 hasRelatedWork W2008485548 @default.
- W2963669331 hasRelatedWork W2008746165 @default.
- W2963669331 hasRelatedWork W2015713714 @default.
- W2963669331 hasRelatedWork W2076190861 @default.
- W2963669331 hasRelatedWork W2160711460 @default.
- W2963669331 hasRelatedWork W2295886933 @default.
- W2963669331 hasRelatedWork W2513995670 @default.
- W2963669331 hasRelatedWork W2527948342 @default.
- W2963669331 hasRelatedWork W2528877310 @default.
- W2963669331 hasRelatedWork W2555861473 @default.
- W2963669331 hasRelatedWork W2587540047 @default.
- W2963669331 hasRelatedWork W2588663948 @default.
- W2963669331 hasRelatedWork W2766663174 @default.
- W2963669331 hasRelatedWork W3137721117 @default.
- W2963669331 hasRelatedWork W3202260547 @default.
- W2963669331 hasRelatedWork W41334280 @default.
- W2963669331 hasRelatedWork W2121735816 @default.
- W2963669331 isParatext "false" @default.
- W2963669331 isRetracted "false" @default.
- W2963669331 magId "2963669331" @default.
- W2963669331 workType "article" @default.