Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963670497> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2963670497 endingPage "86" @default.
- W2963670497 startingPage "77" @default.
- W2963670497 abstract "The massive amount of video data produced by surveillance networks in industries instigate various challenges in exploring these videos for many applications, such as video summarization (VS), analysis, indexing, and retrieval. The task of multiview video summarization (MVS) is very challenging due to the gigantic size of data, redundancy, overlapping in views, light variations, and interview correlations. To address these challenges, various low-level features and clustering-based soft computing techniques are proposed that cannot fully exploit MVS. In this article, we achieve MVS by integrating deep neural network based soft computing techniques in a two-tier framework. The first online tier performs target-appearance-based shots segmentation and stores them in a lookup table that is transmitted to cloud for further processing. The second tier extracts deep features from each frame of a sequence in the lookup table and pass them to deep bidirectional long short-term memory (DB-LSTM) to acquire probabilities of informativeness and generates a summary. Experimental evaluation on benchmark dataset and industrial surveillance data from YouTube confirms the better performance of our system compared to the state-of-the-art MVS methods." @default.
- W2963670497 created "2019-07-30" @default.
- W2963670497 creator A5007077356 @default.
- W2963670497 creator A5018267985 @default.
- W2963670497 creator A5034945583 @default.
- W2963670497 creator A5045093520 @default.
- W2963670497 creator A5090689566 @default.
- W2963670497 date "2020-01-01" @default.
- W2963670497 modified "2023-10-03" @default.
- W2963670497 title "Cloud-Assisted Multiview Video Summarization Using CNN and Bidirectional LSTM" @default.
- W2963670497 cites W1587083568 @default.
- W2963670497 cites W1978805590 @default.
- W2963670497 cites W1981781955 @default.
- W2963670497 cites W1986668597 @default.
- W2963670497 cites W2014234730 @default.
- W2963670497 cites W2100916003 @default.
- W2963670497 cites W2117539524 @default.
- W2963670497 cites W2119362355 @default.
- W2963670497 cites W2123750492 @default.
- W2963670497 cites W2130417979 @default.
- W2963670497 cites W2151009539 @default.
- W2963670497 cites W2155893237 @default.
- W2963670497 cites W2261725834 @default.
- W2963670497 cites W2314087435 @default.
- W2963670497 cites W2345600632 @default.
- W2963670497 cites W2414710274 @default.
- W2963670497 cites W2476076050 @default.
- W2963670497 cites W2508193352 @default.
- W2963670497 cites W2518500747 @default.
- W2963670497 cites W2559909572 @default.
- W2963670497 cites W2617122763 @default.
- W2963670497 cites W2767690801 @default.
- W2963670497 cites W2793113313 @default.
- W2963670497 cites W2794022343 @default.
- W2963670497 cites W2794372970 @default.
- W2963670497 cites W2806203604 @default.
- W2963670497 cites W2886810500 @default.
- W2963670497 cites W2894544906 @default.
- W2963670497 cites W2899116516 @default.
- W2963670497 cites W2900471873 @default.
- W2963670497 cites W2914868535 @default.
- W2963670497 cites W2962744037 @default.
- W2963670497 cites W2963163009 @default.
- W2963670497 cites W3098088916 @default.
- W2963670497 cites W3098111054 @default.
- W2963670497 doi "https://doi.org/10.1109/tii.2019.2929228" @default.
- W2963670497 hasPublicationYear "2020" @default.
- W2963670497 type Work @default.
- W2963670497 sameAs 2963670497 @default.
- W2963670497 citedByCount "88" @default.
- W2963670497 countsByYear W29636704972019 @default.
- W2963670497 countsByYear W29636704972020 @default.
- W2963670497 countsByYear W29636704972021 @default.
- W2963670497 countsByYear W29636704972022 @default.
- W2963670497 countsByYear W29636704972023 @default.
- W2963670497 crossrefType "journal-article" @default.
- W2963670497 hasAuthorship W2963670497A5007077356 @default.
- W2963670497 hasAuthorship W2963670497A5018267985 @default.
- W2963670497 hasAuthorship W2963670497A5034945583 @default.
- W2963670497 hasAuthorship W2963670497A5045093520 @default.
- W2963670497 hasAuthorship W2963670497A5090689566 @default.
- W2963670497 hasBestOaLocation W29636704972 @default.
- W2963670497 hasConcept C111919701 @default.
- W2963670497 hasConcept C121684516 @default.
- W2963670497 hasConcept C154945302 @default.
- W2963670497 hasConcept C170858558 @default.
- W2963670497 hasConcept C31972630 @default.
- W2963670497 hasConcept C41008148 @default.
- W2963670497 hasConcept C79974875 @default.
- W2963670497 hasConceptScore W2963670497C111919701 @default.
- W2963670497 hasConceptScore W2963670497C121684516 @default.
- W2963670497 hasConceptScore W2963670497C154945302 @default.
- W2963670497 hasConceptScore W2963670497C170858558 @default.
- W2963670497 hasConceptScore W2963670497C31972630 @default.
- W2963670497 hasConceptScore W2963670497C41008148 @default.
- W2963670497 hasConceptScore W2963670497C79974875 @default.
- W2963670497 hasFunder F4320322120 @default.
- W2963670497 hasIssue "1" @default.
- W2963670497 hasLocation W29636704971 @default.
- W2963670497 hasLocation W29636704972 @default.
- W2963670497 hasOpenAccess W2963670497 @default.
- W2963670497 hasPrimaryLocation W29636704971 @default.
- W2963670497 hasRelatedWork W2056180080 @default.
- W2963670497 hasRelatedWork W2166044122 @default.
- W2963670497 hasRelatedWork W2285613413 @default.
- W2963670497 hasRelatedWork W2351187795 @default.
- W2963670497 hasRelatedWork W2380641910 @default.
- W2963670497 hasRelatedWork W2389846579 @default.
- W2963670497 hasRelatedWork W2561691764 @default.
- W2963670497 hasRelatedWork W2589098947 @default.
- W2963670497 hasRelatedWork W2604412476 @default.
- W2963670497 hasRelatedWork W52724171 @default.
- W2963670497 hasVolume "16" @default.
- W2963670497 isParatext "false" @default.
- W2963670497 isRetracted "false" @default.
- W2963670497 magId "2963670497" @default.
- W2963670497 workType "article" @default.