Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963684714> ?p ?o ?g. }
- W2963684714 endingPage "334" @default.
- W2963684714 startingPage "295" @default.
- W2963684714 abstract "Singular value decomposition is the key tool in the analysis and understanding of linear regularization methods in Hilbert spaces. Besides simplifying computations it allows to provide a good understanding of properties of the forward problem compared to the prior information introduced by the regularization methods. In the last decade nonlinear variational approaches such as ` or total variation regularizations became quite prominent regularization techniques with certain properties being superior to standard methods. In the analysis of those, singular values and vectors did not play any role so far, for the obvious reason that these problems are nonlinear, together with the issue of defining singular values and singular vectors in the first place. In this paper however we want to start a study of singular values and vectors for nonlinear variational regularization of linear inverse problems, with particular focus on singular onehomogeneous regularization functionals. A major role is played by the smallest singular value, which we define as the ground state of an appropriate functional combining the (semi)norm introduced by the forward operator and the regularization functional. The optimality condition for the ground state further yields a natural generalization to higher singular values and vectors involving the subdifferential of the regularization functional, although we shall see that the Rayleigh principle may fail for higher singular values. Using those definitions of singular values and vectors, we shall carry over two main properties from the world of linear regularization. The first one is gaining information about scale, respectively the behavior of regularization techniques at different scales. This also leads to novel estimates at different scales, generalizing the estimates for the coefficients in the linear singular value expansion. The second one is to provide classes of exact solutions for variational regularization methods. We will show that all singular vectors can be reconstructed up to a scalar factor by the standard Tikhonov-type regularization approach even in the presence of (small) noise. Moreover, we will show that they can even be reconstructed without any bias by the recently popularized inverse scale space method." @default.
- W2963684714 created "2019-07-30" @default.
- W2963684714 creator A5008341403 @default.
- W2963684714 creator A5069220813 @default.
- W2963684714 date "2013-01-01" @default.
- W2963684714 modified "2023-10-12" @default.
- W2963684714 title "Ground states and singular vectors of convex variational regularization methods" @default.
- W2963684714 cites W1499071767 @default.
- W2963684714 cites W1543963486 @default.
- W2963684714 cites W1570089119 @default.
- W2963684714 cites W1592883401 @default.
- W2963684714 cites W1600371943 @default.
- W2963684714 cites W1653619892 @default.
- W2963684714 cites W1965366508 @default.
- W2963684714 cites W1972949070 @default.
- W2963684714 cites W1977736753 @default.
- W2963684714 cites W1981269060 @default.
- W2963684714 cites W1984856013 @default.
- W2963684714 cites W1989130025 @default.
- W2963684714 cites W1993118533 @default.
- W2963684714 cites W1994885473 @default.
- W2963684714 cites W1995536962 @default.
- W2963684714 cites W1996287810 @default.
- W2963684714 cites W2000594266 @default.
- W2963684714 cites W2004653286 @default.
- W2963684714 cites W2011181254 @default.
- W2963684714 cites W2017848200 @default.
- W2963684714 cites W2021535288 @default.
- W2963684714 cites W2023206259 @default.
- W2963684714 cites W2024793963 @default.
- W2963684714 cites W2035582111 @default.
- W2963684714 cites W2039939700 @default.
- W2963684714 cites W2042948547 @default.
- W2963684714 cites W2043380148 @default.
- W2963684714 cites W2045512849 @default.
- W2963684714 cites W2045559171 @default.
- W2963684714 cites W2054656164 @default.
- W2963684714 cites W207373900 @default.
- W2963684714 cites W2079516848 @default.
- W2963684714 cites W2080385522 @default.
- W2963684714 cites W2082823585 @default.
- W2963684714 cites W2083977095 @default.
- W2963684714 cites W2086953401 @default.
- W2963684714 cites W2089231054 @default.
- W2963684714 cites W2092231222 @default.
- W2963684714 cites W2095582900 @default.
- W2963684714 cites W2096003514 @default.
- W2963684714 cites W2101745321 @default.
- W2963684714 cites W2103559027 @default.
- W2963684714 cites W2106398669 @default.
- W2963684714 cites W2129131372 @default.
- W2963684714 cites W2129638195 @default.
- W2963684714 cites W2136935487 @default.
- W2963684714 cites W2138019504 @default.
- W2963684714 cites W2144795679 @default.
- W2963684714 cites W2146195822 @default.
- W2963684714 cites W2154332973 @default.
- W2963684714 cites W2155447220 @default.
- W2963684714 cites W2156529323 @default.
- W2963684714 cites W2156575092 @default.
- W2963684714 cites W2160310928 @default.
- W2963684714 cites W2296616510 @default.
- W2963684714 cites W2460182128 @default.
- W2963684714 cites W2735310850 @default.
- W2963684714 cites W2962898451 @default.
- W2963684714 cites W3102551607 @default.
- W2963684714 cites W584246135 @default.
- W2963684714 cites W73133606 @default.
- W2963684714 cites W751127851 @default.
- W2963684714 doi "https://doi.org/10.4310/maa.2013.v20.n4.a1" @default.
- W2963684714 hasPublicationYear "2013" @default.
- W2963684714 type Work @default.
- W2963684714 sameAs 2963684714 @default.
- W2963684714 citedByCount "67" @default.
- W2963684714 countsByYear W29636847142014 @default.
- W2963684714 countsByYear W29636847142015 @default.
- W2963684714 countsByYear W29636847142016 @default.
- W2963684714 countsByYear W29636847142017 @default.
- W2963684714 countsByYear W29636847142018 @default.
- W2963684714 countsByYear W29636847142019 @default.
- W2963684714 countsByYear W29636847142020 @default.
- W2963684714 countsByYear W29636847142021 @default.
- W2963684714 countsByYear W29636847142022 @default.
- W2963684714 countsByYear W29636847142023 @default.
- W2963684714 crossrefType "journal-article" @default.
- W2963684714 hasAuthorship W2963684714A5008341403 @default.
- W2963684714 hasAuthorship W2963684714A5069220813 @default.
- W2963684714 hasBestOaLocation W29636847141 @default.
- W2963684714 hasConcept C112680207 @default.
- W2963684714 hasConcept C12108790 @default.
- W2963684714 hasConcept C134306372 @default.
- W2963684714 hasConcept C154945302 @default.
- W2963684714 hasConcept C157972887 @default.
- W2963684714 hasConcept C2524010 @default.
- W2963684714 hasConcept C2776135515 @default.
- W2963684714 hasConcept C28826006 @default.
- W2963684714 hasConcept C33923547 @default.
- W2963684714 hasConcept C41008148 @default.