Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963695665> ?p ?o ?g. }
- W2963695665 abstract "In sparse learning, the squared Euclidean distance is a popular choice for measuring the approximation quality. However, the use of other forms of parametrized loss functions, including asymmetric losses, has generated research interest. In this paper, we perform sparse learning using a broad class of smooth piecewise linear quadratic (PLQ) loss functions, including robust and asymmetric losses that are adaptable to many real-world scenarios. The proposed framework also supports heterogeneous data modeling by allowing different PLQ penalties for different blocks of residual vectors (split-PLQ). We demonstrate the impact of the proposed sparse learning in image recovery, and apply the proposed split-PLQ loss approach to tag refinement for image annotation and retrieval." @default.
- W2963695665 created "2019-07-30" @default.
- W2963695665 creator A5046632395 @default.
- W2963695665 creator A5081874896 @default.
- W2963695665 creator A5091863515 @default.
- W2963695665 date "2016-03-01" @default.
- W2963695665 modified "2023-10-14" @default.
- W2963695665 title "Beyond L2-loss functions for learning sparse models" @default.
- W2963695665 cites W1480376833 @default.
- W2963695665 cites W1532257412 @default.
- W2963695665 cites W1540764732 @default.
- W2963695665 cites W1563800729 @default.
- W2963695665 cites W1574645113 @default.
- W2963695665 cites W1591116419 @default.
- W2963695665 cites W1666447063 @default.
- W2963695665 cites W1890834058 @default.
- W2963695665 cites W1904464160 @default.
- W2963695665 cites W1946620893 @default.
- W2963695665 cites W1964810009 @default.
- W2963695665 cites W1977079033 @default.
- W2963695665 cites W1992405901 @default.
- W2963695665 cites W1992726305 @default.
- W2963695665 cites W1995319862 @default.
- W2963695665 cites W2018790085 @default.
- W2963695665 cites W2025051526 @default.
- W2963695665 cites W2042944397 @default.
- W2963695665 cites W2067474491 @default.
- W2963695665 cites W2074275156 @default.
- W2963695665 cites W2076605490 @default.
- W2963695665 cites W2097018403 @default.
- W2963695665 cites W2105454037 @default.
- W2963695665 cites W2107628405 @default.
- W2963695665 cites W2112447569 @default.
- W2963695665 cites W2115429828 @default.
- W2963695665 cites W2117242598 @default.
- W2963695665 cites W2122922389 @default.
- W2963695665 cites W2128638419 @default.
- W2963695665 cites W2129812935 @default.
- W2963695665 cites W2132382428 @default.
- W2963695665 cites W2141520175 @default.
- W2963695665 cites W2146047955 @default.
- W2963695665 cites W2148069367 @default.
- W2963695665 cites W2156637418 @default.
- W2963695665 cites W2160547390 @default.
- W2963695665 cites W2161219071 @default.
- W2963695665 cites W2163398148 @default.
- W2963695665 cites W2167034998 @default.
- W2963695665 cites W2167250202 @default.
- W2963695665 cites W2170641283 @default.
- W2963695665 cites W2296399167 @default.
- W2963695665 cites W2296616510 @default.
- W2963695665 cites W2546756472 @default.
- W2963695665 cites W2798766386 @default.
- W2963695665 cites W2953139536 @default.
- W2963695665 cites W2963424430 @default.
- W2963695665 cites W2963955564 @default.
- W2963695665 cites W3217596123 @default.
- W2963695665 cites W38891395 @default.
- W2963695665 doi "https://doi.org/10.1109/icassp.2016.7472567" @default.
- W2963695665 hasPublicationYear "2016" @default.
- W2963695665 type Work @default.
- W2963695665 sameAs 2963695665 @default.
- W2963695665 citedByCount "1" @default.
- W2963695665 countsByYear W29636956652016 @default.
- W2963695665 crossrefType "proceedings-article" @default.
- W2963695665 hasAuthorship W2963695665A5046632395 @default.
- W2963695665 hasAuthorship W2963695665A5081874896 @default.
- W2963695665 hasAuthorship W2963695665A5091863515 @default.
- W2963695665 hasBestOaLocation W29636956652 @default.
- W2963695665 hasConcept C11413529 @default.
- W2963695665 hasConcept C115961682 @default.
- W2963695665 hasConcept C119857082 @default.
- W2963695665 hasConcept C126255220 @default.
- W2963695665 hasConcept C129782007 @default.
- W2963695665 hasConcept C129844170 @default.
- W2963695665 hasConcept C134306372 @default.
- W2963695665 hasConcept C154945302 @default.
- W2963695665 hasConcept C155512373 @default.
- W2963695665 hasConcept C164660894 @default.
- W2963695665 hasConcept C2524010 @default.
- W2963695665 hasConcept C2777212361 @default.
- W2963695665 hasConcept C33923547 @default.
- W2963695665 hasConcept C41008148 @default.
- W2963695665 hasConceptScore W2963695665C11413529 @default.
- W2963695665 hasConceptScore W2963695665C115961682 @default.
- W2963695665 hasConceptScore W2963695665C119857082 @default.
- W2963695665 hasConceptScore W2963695665C126255220 @default.
- W2963695665 hasConceptScore W2963695665C129782007 @default.
- W2963695665 hasConceptScore W2963695665C129844170 @default.
- W2963695665 hasConceptScore W2963695665C134306372 @default.
- W2963695665 hasConceptScore W2963695665C154945302 @default.
- W2963695665 hasConceptScore W2963695665C155512373 @default.
- W2963695665 hasConceptScore W2963695665C164660894 @default.
- W2963695665 hasConceptScore W2963695665C2524010 @default.
- W2963695665 hasConceptScore W2963695665C2777212361 @default.
- W2963695665 hasConceptScore W2963695665C33923547 @default.
- W2963695665 hasConceptScore W2963695665C41008148 @default.
- W2963695665 hasLocation W29636956651 @default.
- W2963695665 hasLocation W29636956652 @default.
- W2963695665 hasLocation W29636956653 @default.