Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963699746> ?p ?o ?g. }
- W2963699746 endingPage "53" @default.
- W2963699746 startingPage "1" @default.
- W2963699746 abstract "In this paper, we describe a surprising link between the theory of the Goldman–Turaev Lie bialgebra on surfaces of genus zero and the Kashiwara–Vergne (KV) problem in Lie theory. Let Σ be an oriented 2-dimensional manifold with non-empty boundary and K a field of characteristic zero. The Goldman–Turaev Lie bialgebra is defined by the Goldman bracket {−,−} and Turaev cobracket δ on the K-span of homotopy classes of free loops on Σ. Applying an expansion θ:Kπ→K〈x1,…,xn〉 yields an algebraic description of the operations {−,−} and δ in terms of non-commutative variables x1,…,xn. If Σ is a surface of genus g=0 the lowest degree parts {−,−}−1 and δ−1 are canonically defined (and independent of θ). They define a Lie bialgebra structure on the space of cyclic words which was introduced and studied by Schedler [31]. It was conjectured by the second and the third authors that one can define an expansion θ such that {−,−}={−,−}−1 and δ=δ−1. The main result of this paper states that for surfaces of genus zero constructing such an expansion is essentially equivalent to the KV problem. In [24], Massuyeau constructed such expansions using the Kontsevich integral. In order to prove this result, we show that the Turaev cobracket δ can be constructed in terms of the double bracket (upgrading the Goldman bracket) and the non-commutative divergence cocycle which plays the central role in the KV theory. Among other things, this observation gives a new topological interpretation of the KV problem and allows to extend it to surfaces with arbitrary number of boundary components (and of arbitrary genus, see [2])." @default.
- W2963699746 created "2019-07-30" @default.
- W2963699746 creator A5009900773 @default.
- W2963699746 creator A5015112450 @default.
- W2963699746 creator A5021077868 @default.
- W2963699746 creator A5042713027 @default.
- W2963699746 date "2018-02-01" @default.
- W2963699746 modified "2023-10-10" @default.
- W2963699746 title "The Goldman–Turaev Lie bialgebra in genus zero and the Kashiwara–Vergne problem" @default.
- W2963699746 cites W1506226245 @default.
- W2963699746 cites W1623029560 @default.
- W2963699746 cites W1821776218 @default.
- W2963699746 cites W1977483478 @default.
- W2963699746 cites W1977568107 @default.
- W2963699746 cites W2009016855 @default.
- W2963699746 cites W2032609829 @default.
- W2963699746 cites W2043063495 @default.
- W2963699746 cites W2043232165 @default.
- W2963699746 cites W2044389549 @default.
- W2963699746 cites W2050690328 @default.
- W2963699746 cites W2061630914 @default.
- W2963699746 cites W2078393607 @default.
- W2963699746 cites W2079112499 @default.
- W2963699746 cites W2090359466 @default.
- W2963699746 cites W2125748670 @default.
- W2963699746 cites W2153521840 @default.
- W2963699746 cites W2962872689 @default.
- W2963699746 cites W2962965607 @default.
- W2963699746 cites W2963365145 @default.
- W2963699746 cites W2963654115 @default.
- W2963699746 cites W2963665518 @default.
- W2963699746 cites W2963866165 @default.
- W2963699746 cites W2964329607 @default.
- W2963699746 doi "https://doi.org/10.1016/j.aim.2017.12.005" @default.
- W2963699746 hasPublicationYear "2018" @default.
- W2963699746 type Work @default.
- W2963699746 sameAs 2963699746 @default.
- W2963699746 citedByCount "22" @default.
- W2963699746 countsByYear W29636997462018 @default.
- W2963699746 countsByYear W29636997462019 @default.
- W2963699746 countsByYear W29636997462020 @default.
- W2963699746 countsByYear W29636997462021 @default.
- W2963699746 countsByYear W29636997462022 @default.
- W2963699746 countsByYear W29636997462023 @default.
- W2963699746 crossrefType "journal-article" @default.
- W2963699746 hasAuthorship W2963699746A5009900773 @default.
- W2963699746 hasAuthorship W2963699746A5015112450 @default.
- W2963699746 hasAuthorship W2963699746A5021077868 @default.
- W2963699746 hasAuthorship W2963699746A5042713027 @default.
- W2963699746 hasBestOaLocation W29636997461 @default.
- W2963699746 hasConcept C10138342 @default.
- W2963699746 hasConcept C114614502 @default.
- W2963699746 hasConcept C127413603 @default.
- W2963699746 hasConcept C133769200 @default.
- W2963699746 hasConcept C136119220 @default.
- W2963699746 hasConcept C138885662 @default.
- W2963699746 hasConcept C143135876 @default.
- W2963699746 hasConcept C14344131 @default.
- W2963699746 hasConcept C157369684 @default.
- W2963699746 hasConcept C162324750 @default.
- W2963699746 hasConcept C182306322 @default.
- W2963699746 hasConcept C183778304 @default.
- W2963699746 hasConcept C202444582 @default.
- W2963699746 hasConcept C203946495 @default.
- W2963699746 hasConcept C2778676360 @default.
- W2963699746 hasConcept C2780813799 @default.
- W2963699746 hasConcept C29712632 @default.
- W2963699746 hasConcept C33923547 @default.
- W2963699746 hasConcept C41895202 @default.
- W2963699746 hasConcept C51568863 @default.
- W2963699746 hasConcept C59822182 @default.
- W2963699746 hasConcept C73648015 @default.
- W2963699746 hasConcept C78519656 @default.
- W2963699746 hasConcept C86803240 @default.
- W2963699746 hasConceptScore W2963699746C10138342 @default.
- W2963699746 hasConceptScore W2963699746C114614502 @default.
- W2963699746 hasConceptScore W2963699746C127413603 @default.
- W2963699746 hasConceptScore W2963699746C133769200 @default.
- W2963699746 hasConceptScore W2963699746C136119220 @default.
- W2963699746 hasConceptScore W2963699746C138885662 @default.
- W2963699746 hasConceptScore W2963699746C143135876 @default.
- W2963699746 hasConceptScore W2963699746C14344131 @default.
- W2963699746 hasConceptScore W2963699746C157369684 @default.
- W2963699746 hasConceptScore W2963699746C162324750 @default.
- W2963699746 hasConceptScore W2963699746C182306322 @default.
- W2963699746 hasConceptScore W2963699746C183778304 @default.
- W2963699746 hasConceptScore W2963699746C202444582 @default.
- W2963699746 hasConceptScore W2963699746C203946495 @default.
- W2963699746 hasConceptScore W2963699746C2778676360 @default.
- W2963699746 hasConceptScore W2963699746C2780813799 @default.
- W2963699746 hasConceptScore W2963699746C29712632 @default.
- W2963699746 hasConceptScore W2963699746C33923547 @default.
- W2963699746 hasConceptScore W2963699746C41895202 @default.
- W2963699746 hasConceptScore W2963699746C51568863 @default.
- W2963699746 hasConceptScore W2963699746C59822182 @default.
- W2963699746 hasConceptScore W2963699746C73648015 @default.
- W2963699746 hasConceptScore W2963699746C78519656 @default.
- W2963699746 hasConceptScore W2963699746C86803240 @default.