Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963701724> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2963701724 abstract "This paper presents a portable inertial measurement unit (IMU)-based motion sensing system and proposed an adaptive gait phase detection approach for non-steady state walking and multiple activities (walking, running, stair ascent, stair descent, squat) monitoring. The algorithm aims to overcome the limitation of existing gait detection methods that are time-domain thresholding based for steady-state motion and are not versatile to detect gait during different activities or different gait patterns of the same activity. The portable sensing suit is composed of three IMU sensors (wearable sensors for gait phase detection) and two footswitches (ground truth measurement and not needed for gait detection of the proposed algorithm). The acceleration, angular velocity, Euler angle, resultant acceleration, and resultant angular velocity from three IMUs are used as the input training data and the data of two footswitches used as the training label data (single support, double support, swing phase). Three methods 1) Logistic Regression (LR), 2) Random Forest Classifier (RF), and 3) Artificial Neural Network (NN) are used to build the gait phase detection models. The result shows our proposed gait phase detection with Random Forest Classifier can achieve 98.94% accuracy in walking, 98.45% in running, 99.15% in stair-ascent, 99.00% in stair-descent, and 99.63% in squatting. It demonstrates that our sensing suit can not only detect the gait status in any transient state but also generalize to multiple activities. Therefore, it can be implemented in real-time monitoring of human gait and control of assistive devices." @default.
- W2963701724 created "2019-07-30" @default.
- W2963701724 creator A5016220872 @default.
- W2963701724 creator A5040083111 @default.
- W2963701724 creator A5056628854 @default.
- W2963701724 creator A5063492117 @default.
- W2963701724 creator A5064430071 @default.
- W2963701724 creator A5067087968 @default.
- W2963701724 creator A5088424929 @default.
- W2963701724 date "2019-04-15" @default.
- W2963701724 modified "2023-10-02" @default.
- W2963701724 title "Machine Learning Based Adaptive Gait Phase Estimation Using Inertial Measurement Sensors" @default.
- W2963701724 cites W1977316600 @default.
- W2963701724 cites W1984559703 @default.
- W2963701724 cites W1992589116 @default.
- W2963701724 cites W2034579881 @default.
- W2963701724 cites W2062513361 @default.
- W2963701724 cites W2064717224 @default.
- W2963701724 cites W2093049403 @default.
- W2963701724 cites W2112295121 @default.
- W2963701724 cites W2124517686 @default.
- W2963701724 cites W2128404879 @default.
- W2963701724 cites W2911964244 @default.
- W2963701724 doi "https://doi.org/10.1115/dmd2019-3266" @default.
- W2963701724 hasPublicationYear "2019" @default.
- W2963701724 type Work @default.
- W2963701724 sameAs 2963701724 @default.
- W2963701724 citedByCount "11" @default.
- W2963701724 countsByYear W29637017242020 @default.
- W2963701724 countsByYear W29637017242021 @default.
- W2963701724 countsByYear W29637017242022 @default.
- W2963701724 countsByYear W29637017242023 @default.
- W2963701724 crossrefType "proceedings-article" @default.
- W2963701724 hasAuthorship W2963701724A5016220872 @default.
- W2963701724 hasAuthorship W2963701724A5040083111 @default.
- W2963701724 hasAuthorship W2963701724A5056628854 @default.
- W2963701724 hasAuthorship W2963701724A5063492117 @default.
- W2963701724 hasAuthorship W2963701724A5064430071 @default.
- W2963701724 hasAuthorship W2963701724A5067087968 @default.
- W2963701724 hasAuthorship W2963701724A5088424929 @default.
- W2963701724 hasBestOaLocation W29637017241 @default.
- W2963701724 hasConcept C111919701 @default.
- W2963701724 hasConcept C151800584 @default.
- W2963701724 hasConcept C154945302 @default.
- W2963701724 hasConcept C173906292 @default.
- W2963701724 hasConcept C20220851 @default.
- W2963701724 hasConcept C31972630 @default.
- W2963701724 hasConcept C41008148 @default.
- W2963701724 hasConcept C44154836 @default.
- W2963701724 hasConcept C71924100 @default.
- W2963701724 hasConcept C79061980 @default.
- W2963701724 hasConcept C89805583 @default.
- W2963701724 hasConcept C99508421 @default.
- W2963701724 hasConceptScore W2963701724C111919701 @default.
- W2963701724 hasConceptScore W2963701724C151800584 @default.
- W2963701724 hasConceptScore W2963701724C154945302 @default.
- W2963701724 hasConceptScore W2963701724C173906292 @default.
- W2963701724 hasConceptScore W2963701724C20220851 @default.
- W2963701724 hasConceptScore W2963701724C31972630 @default.
- W2963701724 hasConceptScore W2963701724C41008148 @default.
- W2963701724 hasConceptScore W2963701724C44154836 @default.
- W2963701724 hasConceptScore W2963701724C71924100 @default.
- W2963701724 hasConceptScore W2963701724C79061980 @default.
- W2963701724 hasConceptScore W2963701724C89805583 @default.
- W2963701724 hasConceptScore W2963701724C99508421 @default.
- W2963701724 hasLocation W29637017241 @default.
- W2963701724 hasOpenAccess W2963701724 @default.
- W2963701724 hasPrimaryLocation W29637017241 @default.
- W2963701724 hasRelatedWork W1494850231 @default.
- W2963701724 hasRelatedWork W2036669236 @default.
- W2963701724 hasRelatedWork W2077590384 @default.
- W2963701724 hasRelatedWork W2148832324 @default.
- W2963701724 hasRelatedWork W2153542846 @default.
- W2963701724 hasRelatedWork W2390631805 @default.
- W2963701724 hasRelatedWork W2494850111 @default.
- W2963701724 hasRelatedWork W2558330811 @default.
- W2963701724 hasRelatedWork W2945244624 @default.
- W2963701724 hasRelatedWork W4293105002 @default.
- W2963701724 isParatext "false" @default.
- W2963701724 isRetracted "false" @default.
- W2963701724 magId "2963701724" @default.
- W2963701724 workType "article" @default.