Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963703443> ?p ?o ?g. }
- W2963703443 abstract "It is well known that every closure system can be represented by an implicational base, or by the set of its meet-irreducible elements. In Horn logic, these are respectively known as the Horn expressions and the characteristic models. In this paper, we consider the problem of translating between the two representations in acyclic convex geometries. Quite surprisingly, we show that the problem in this context is already harder than the dualization in distributive lattices, a generalization of the well-known hypergraph dualization problem for which the existence of an output quasi-polynomial time algorithm is open. In light of this result, we consider a proper subclass of acyclic convex geometries, namely ranked convex geometries, as those that admit a ranked implicational base analogous to that of ranked posets. For this class, we provide output quasi-polynomial time algorithms based on hypergraph dualization for translating between the two representations. This improves the understanding of a long-standing open problem." @default.
- W2963703443 created "2019-07-30" @default.
- W2963703443 creator A5011487074 @default.
- W2963703443 creator A5018122972 @default.
- W2963703443 creator A5066190891 @default.
- W2963703443 date "2019-07-22" @default.
- W2963703443 modified "2023-09-25" @default.
- W2963703443 title "Translating between the representations of a ranked convex geometry." @default.
- W2963703443 cites W106642128 @default.
- W2963703443 cites W146964180 @default.
- W2963703443 cites W1503328822 @default.
- W2963703443 cites W1503729935 @default.
- W2963703443 cites W1546514315 @default.
- W2963703443 cites W1551222617 @default.
- W2963703443 cites W1562478345 @default.
- W2963703443 cites W1573517507 @default.
- W2963703443 cites W1749537502 @default.
- W2963703443 cites W1866396423 @default.
- W2963703443 cites W194121675 @default.
- W2963703443 cites W1972004026 @default.
- W2963703443 cites W1976127067 @default.
- W2963703443 cites W1982553560 @default.
- W2963703443 cites W1990216234 @default.
- W2963703443 cites W1998555372 @default.
- W2963703443 cites W1999427653 @default.
- W2963703443 cites W2007940874 @default.
- W2963703443 cites W2018498959 @default.
- W2963703443 cites W2025581723 @default.
- W2963703443 cites W2032558352 @default.
- W2963703443 cites W2034262006 @default.
- W2963703443 cites W203529317 @default.
- W2963703443 cites W2047348140 @default.
- W2963703443 cites W2065895258 @default.
- W2963703443 cites W2070781429 @default.
- W2963703443 cites W2072284346 @default.
- W2963703443 cites W2072414537 @default.
- W2963703443 cites W2074053575 @default.
- W2963703443 cites W2080947358 @default.
- W2963703443 cites W2089417393 @default.
- W2963703443 cites W2093397547 @default.
- W2963703443 cites W2104025390 @default.
- W2963703443 cites W2154671707 @default.
- W2963703443 cites W2158470853 @default.
- W2963703443 cites W2219393927 @default.
- W2963703443 cites W2313098266 @default.
- W2963703443 cites W2558796058 @default.
- W2963703443 cites W2801019962 @default.
- W2963703443 cites W2963150415 @default.
- W2963703443 cites W2963533754 @default.
- W2963703443 cites W3037477305 @default.
- W2963703443 cites W3177605298 @default.
- W2963703443 cites W601066215 @default.
- W2963703443 cites W89605379 @default.
- W2963703443 hasPublicationYear "2019" @default.
- W2963703443 type Work @default.
- W2963703443 sameAs 2963703443 @default.
- W2963703443 citedByCount "0" @default.
- W2963703443 crossrefType "posted-content" @default.
- W2963703443 hasAuthorship W2963703443A5011487074 @default.
- W2963703443 hasAuthorship W2963703443A5018122972 @default.
- W2963703443 hasAuthorship W2963703443A5066190891 @default.
- W2963703443 hasConcept C110202963 @default.
- W2963703443 hasConcept C112680207 @default.
- W2963703443 hasConcept C114614502 @default.
- W2963703443 hasConcept C11821877 @default.
- W2963703443 hasConcept C118615104 @default.
- W2963703443 hasConcept C134306372 @default.
- W2963703443 hasConcept C136119220 @default.
- W2963703443 hasConcept C146834321 @default.
- W2963703443 hasConcept C151730666 @default.
- W2963703443 hasConcept C154945302 @default.
- W2963703443 hasConcept C157972887 @default.
- W2963703443 hasConcept C162324750 @default.
- W2963703443 hasConcept C177148314 @default.
- W2963703443 hasConcept C177264268 @default.
- W2963703443 hasConcept C199360897 @default.
- W2963703443 hasConcept C202444582 @default.
- W2963703443 hasConcept C2524010 @default.
- W2963703443 hasConcept C2777212361 @default.
- W2963703443 hasConcept C2779343474 @default.
- W2963703443 hasConcept C2781221856 @default.
- W2963703443 hasConcept C311688 @default.
- W2963703443 hasConcept C33923547 @default.
- W2963703443 hasConcept C34447519 @default.
- W2963703443 hasConcept C41008148 @default.
- W2963703443 hasConcept C42058472 @default.
- W2963703443 hasConcept C49870271 @default.
- W2963703443 hasConcept C86803240 @default.
- W2963703443 hasConcept C90119067 @default.
- W2963703443 hasConceptScore W2963703443C110202963 @default.
- W2963703443 hasConceptScore W2963703443C112680207 @default.
- W2963703443 hasConceptScore W2963703443C114614502 @default.
- W2963703443 hasConceptScore W2963703443C11821877 @default.
- W2963703443 hasConceptScore W2963703443C118615104 @default.
- W2963703443 hasConceptScore W2963703443C134306372 @default.
- W2963703443 hasConceptScore W2963703443C136119220 @default.
- W2963703443 hasConceptScore W2963703443C146834321 @default.
- W2963703443 hasConceptScore W2963703443C151730666 @default.
- W2963703443 hasConceptScore W2963703443C154945302 @default.
- W2963703443 hasConceptScore W2963703443C157972887 @default.