Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963704829> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2963704829 abstract "There is a classical extension of Möbius automorphisms of the Riemann sphere into isometries of the hyperbolic space <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H cubed> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {H}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is called the Poincaré extension. In this paper, we construct extensions of rational maps on the Riemann sphere over endomorphisms of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H cubed> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {H}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> exploiting the fact that any holomorphic covering between Riemann surfaces is Möbius for a suitable choice of coordinates. We show that these extensions define conformally natural homomorphisms on suitable subsemigroups of the semigroup of Blaschke maps. We extend the complex multiplication to a product in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H cubed> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {H}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that allows us to construct an extension of any given rational map which is right equivariant with respect to the action of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper P upper S upper L left-parenthesis 2 comma double-struck upper C right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>C</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>PSL(2,mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2963704829 created "2019-07-30" @default.
- W2963704829 creator A5025498274 @default.
- W2963704829 creator A5075659972 @default.
- W2963704829 creator A5084095581 @default.
- W2963704829 date "2015-07-29" @default.
- W2963704829 modified "2023-09-25" @default.
- W2963704829 title "On Poincaré extensions of rational maps" @default.
- W2963704829 cites W100527680 @default.
- W2963704829 cites W1561681248 @default.
- W2963704829 cites W1624570970 @default.
- W2963704829 cites W1992656119 @default.
- W2963704829 cites W2000820872 @default.
- W2963704829 cites W2037907057 @default.
- W2963704829 cites W2068774711 @default.
- W2963704829 cites W2076956802 @default.
- W2963704829 cites W2079175624 @default.
- W2963704829 cites W2128611580 @default.
- W2963704829 cites W4212909276 @default.
- W2963704829 cites W4213116728 @default.
- W2963704829 cites W4232836160 @default.
- W2963704829 cites W4244515083 @default.
- W2963704829 cites W48427054 @default.
- W2963704829 doi "https://doi.org/10.1090/ecgd/281" @default.
- W2963704829 hasPublicationYear "2015" @default.
- W2963704829 type Work @default.
- W2963704829 sameAs 2963704829 @default.
- W2963704829 citedByCount "2" @default.
- W2963704829 countsByYear W29637048292017 @default.
- W2963704829 countsByYear W29637048292019 @default.
- W2963704829 crossrefType "journal-article" @default.
- W2963704829 hasAuthorship W2963704829A5025498274 @default.
- W2963704829 hasAuthorship W2963704829A5075659972 @default.
- W2963704829 hasAuthorship W2963704829A5084095581 @default.
- W2963704829 hasBestOaLocation W29637048291 @default.
- W2963704829 hasConcept C136119220 @default.
- W2963704829 hasConcept C202444582 @default.
- W2963704829 hasConcept C33923547 @default.
- W2963704829 hasConcept C88221313 @default.
- W2963704829 hasConceptScore W2963704829C136119220 @default.
- W2963704829 hasConceptScore W2963704829C202444582 @default.
- W2963704829 hasConceptScore W2963704829C33923547 @default.
- W2963704829 hasConceptScore W2963704829C88221313 @default.
- W2963704829 hasLocation W29637048291 @default.
- W2963704829 hasLocation W29637048292 @default.
- W2963704829 hasLocation W29637048293 @default.
- W2963704829 hasOpenAccess W2963704829 @default.
- W2963704829 hasPrimaryLocation W29637048291 @default.
- W2963704829 hasRelatedWork W1615937971 @default.
- W2963704829 hasRelatedWork W2004495154 @default.
- W2963704829 hasRelatedWork W2016297567 @default.
- W2963704829 hasRelatedWork W2023211758 @default.
- W2963704829 hasRelatedWork W2033746955 @default.
- W2963704829 hasRelatedWork W2036953732 @default.
- W2963704829 hasRelatedWork W2041379286 @default.
- W2963704829 hasRelatedWork W2044103532 @default.
- W2963704829 hasRelatedWork W2217795921 @default.
- W2963704829 hasRelatedWork W2265540454 @default.
- W2963704829 hasRelatedWork W2282362913 @default.
- W2963704829 hasRelatedWork W2493337484 @default.
- W2963704829 hasRelatedWork W2519750795 @default.
- W2963704829 hasRelatedWork W2607301972 @default.
- W2963704829 hasRelatedWork W2729904731 @default.
- W2963704829 hasRelatedWork W3008977142 @default.
- W2963704829 hasRelatedWork W3009210582 @default.
- W2963704829 hasRelatedWork W3154187756 @default.
- W2963704829 hasRelatedWork W3185910872 @default.
- W2963704829 hasRelatedWork W2591103473 @default.
- W2963704829 isParatext "false" @default.
- W2963704829 isRetracted "false" @default.
- W2963704829 magId "2963704829" @default.
- W2963704829 workType "article" @default.