Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963706542> ?p ?o ?g. }
- W2963706542 endingPage "98" @default.
- W2963706542 startingPage "91" @default.
- W2963706542 abstract "Abstract. This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or object detection in images, but have no yet led to a true breakthrough for 3D point cloud labelling tasks due to lack of training data. With the massive data set presented in this paper, we aim at closing this data gap to help unleash the full potential of deep learning methods for 3D labelling tasks. Our semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8 semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad tracks, squares, villages, soccer fields and castles. We describe our labelling interface and show that our data set provides more dense and complete point clouds with much higher overall number of labelled points compared to those already available to the research community. We further provide baseline method descriptions and comparison between methods submitted to our online system. We hope semantic3D.net will pave the way for deep learning methods in 3D point cloud labelling to learn richer, more general 3D representations, and first submissions after only a few months indicate that this might indeed be the case." @default.
- W2963706542 created "2019-07-30" @default.
- W2963706542 creator A5005404030 @default.
- W2963706542 creator A5021908609 @default.
- W2963706542 creator A5027636797 @default.
- W2963706542 creator A5044159906 @default.
- W2963706542 creator A5051085492 @default.
- W2963706542 creator A5071121905 @default.
- W2963706542 date "2017-05-30" @default.
- W2963706542 modified "2023-10-14" @default.
- W2963706542 title "SEMANTIC3D.NET: A NEW LARGE-SCALE POINT CLOUD CLASSIFICATION BENCHMARK" @default.
- W2963706542 cites W114517082 @default.
- W2963706542 cites W125693051 @default.
- W2963706542 cites W16018159 @default.
- W2963706542 cites W172584396 @default.
- W2963706542 cites W1903029394 @default.
- W2963706542 cites W1920022804 @default.
- W2963706542 cites W1985908905 @default.
- W2963706542 cites W2027710719 @default.
- W2963706542 cites W2031489346 @default.
- W2963706542 cites W2051094394 @default.
- W2963706542 cites W2067191022 @default.
- W2963706542 cites W2101926813 @default.
- W2963706542 cites W2103348513 @default.
- W2963706542 cites W2103820944 @default.
- W2963706542 cites W2108598243 @default.
- W2963706542 cites W2115728367 @default.
- W2963706542 cites W2116877738 @default.
- W2963706542 cites W2117539524 @default.
- W2963706542 cites W2141376824 @default.
- W2963706542 cites W2143110079 @default.
- W2963706542 cites W2143516773 @default.
- W2963706542 cites W2147800946 @default.
- W2963706542 cites W2194775991 @default.
- W2963706542 cites W2211722331 @default.
- W2963706542 cites W250737475 @default.
- W2963706542 cites W2511691466 @default.
- W2963706542 cites W2556802233 @default.
- W2963706542 cites W337610345 @default.
- W2963706542 cites W6908809 @default.
- W2963706542 cites W753012316 @default.
- W2963706542 doi "https://doi.org/10.5194/isprs-annals-iv-1-w1-91-2017" @default.
- W2963706542 hasPublicationYear "2017" @default.
- W2963706542 type Work @default.
- W2963706542 sameAs 2963706542 @default.
- W2963706542 citedByCount "359" @default.
- W2963706542 countsByYear W29637065422017 @default.
- W2963706542 countsByYear W29637065422018 @default.
- W2963706542 countsByYear W29637065422019 @default.
- W2963706542 countsByYear W29637065422020 @default.
- W2963706542 countsByYear W29637065422021 @default.
- W2963706542 countsByYear W29637065422022 @default.
- W2963706542 countsByYear W29637065422023 @default.
- W2963706542 crossrefType "journal-article" @default.
- W2963706542 hasAuthorship W2963706542A5005404030 @default.
- W2963706542 hasAuthorship W2963706542A5021908609 @default.
- W2963706542 hasAuthorship W2963706542A5027636797 @default.
- W2963706542 hasAuthorship W2963706542A5044159906 @default.
- W2963706542 hasAuthorship W2963706542A5051085492 @default.
- W2963706542 hasAuthorship W2963706542A5071121905 @default.
- W2963706542 hasBestOaLocation W29637065421 @default.
- W2963706542 hasConcept C108583219 @default.
- W2963706542 hasConcept C111919701 @default.
- W2963706542 hasConcept C119857082 @default.
- W2963706542 hasConcept C124101348 @default.
- W2963706542 hasConcept C131979681 @default.
- W2963706542 hasConcept C154945302 @default.
- W2963706542 hasConcept C177264268 @default.
- W2963706542 hasConcept C185798385 @default.
- W2963706542 hasConcept C199360897 @default.
- W2963706542 hasConcept C205649164 @default.
- W2963706542 hasConcept C41008148 @default.
- W2963706542 hasConcept C58489278 @default.
- W2963706542 hasConcept C58640448 @default.
- W2963706542 hasConcept C79974875 @default.
- W2963706542 hasConcept C81363708 @default.
- W2963706542 hasConceptScore W2963706542C108583219 @default.
- W2963706542 hasConceptScore W2963706542C111919701 @default.
- W2963706542 hasConceptScore W2963706542C119857082 @default.
- W2963706542 hasConceptScore W2963706542C124101348 @default.
- W2963706542 hasConceptScore W2963706542C131979681 @default.
- W2963706542 hasConceptScore W2963706542C154945302 @default.
- W2963706542 hasConceptScore W2963706542C177264268 @default.
- W2963706542 hasConceptScore W2963706542C185798385 @default.
- W2963706542 hasConceptScore W2963706542C199360897 @default.
- W2963706542 hasConceptScore W2963706542C205649164 @default.
- W2963706542 hasConceptScore W2963706542C41008148 @default.
- W2963706542 hasConceptScore W2963706542C58489278 @default.
- W2963706542 hasConceptScore W2963706542C58640448 @default.
- W2963706542 hasConceptScore W2963706542C79974875 @default.
- W2963706542 hasConceptScore W2963706542C81363708 @default.
- W2963706542 hasLocation W29637065421 @default.
- W2963706542 hasLocation W29637065422 @default.
- W2963706542 hasLocation W29637065423 @default.
- W2963706542 hasOpenAccess W2963706542 @default.
- W2963706542 hasPrimaryLocation W29637065421 @default.
- W2963706542 hasRelatedWork W2337926734 @default.
- W2963706542 hasRelatedWork W2799614062 @default.