Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963746755> ?p ?o ?g. }
- W2963746755 abstract "Automatic summarisation is a popular approach to reduce a document to its main arguments. Recent research in the area has focused on neural approaches to summarisation, which can be very data-hungry. However, few large datasets exist and none for the traditionally popular domain of scientific publications, which opens up challenging research avenues centered on encoding large, complex documents. In this paper, we introduce a new dataset for summarisation of computer science publications by exploiting a large resource of author provided summaries and show straightforward ways of extending it further. We develop models on the dataset making use of both neural sentence encoding and traditionally used summarisation features and show that models which encode sentences as well as their local and global context perform best, significantly outperforming well-established baseline methods." @default.
- W2963746755 created "2019-07-30" @default.
- W2963746755 creator A5001151643 @default.
- W2963746755 creator A5018976680 @default.
- W2963746755 creator A5066247911 @default.
- W2963746755 date "2017-01-01" @default.
- W2963746755 modified "2023-09-30" @default.
- W2963746755 title "A Supervised Approach to Extractive Summarisation of Scientific Papers" @default.
- W2963746755 cites W1525595230 @default.
- W2963746755 cites W1544827683 @default.
- W2963746755 cites W1551225669 @default.
- W2963746755 cites W1598682430 @default.
- W2963746755 cites W1602831581 @default.
- W2963746755 cites W1620608722 @default.
- W2963746755 cites W1974339500 @default.
- W2963746755 cites W1975579663 @default.
- W2963746755 cites W1989420837 @default.
- W2963746755 cites W2064675550 @default.
- W2963746755 cites W2085625396 @default.
- W2963746755 cites W2095705004 @default.
- W2963746755 cites W2101390659 @default.
- W2963746755 cites W2102733276 @default.
- W2963746755 cites W2111785667 @default.
- W2963746755 cites W2140440594 @default.
- W2963746755 cites W2144941913 @default.
- W2963746755 cites W2154652894 @default.
- W2963746755 cites W2163605009 @default.
- W2963746755 cites W2182572585 @default.
- W2963746755 cites W2250266598 @default.
- W2963746755 cites W2250361277 @default.
- W2963746755 cites W2250483006 @default.
- W2963746755 cites W2251320462 @default.
- W2963746755 cites W2251670640 @default.
- W2963746755 cites W2251911042 @default.
- W2963746755 cites W2252180731 @default.
- W2963746755 cites W2307381258 @default.
- W2963746755 cites W2442495973 @default.
- W2963746755 cites W2467173223 @default.
- W2963746755 cites W2512972416 @default.
- W2963746755 cites W2566297247 @default.
- W2963746755 cites W2571932860 @default.
- W2963746755 cites W2572480699 @default.
- W2963746755 cites W2574535369 @default.
- W2963746755 cites W2578004193 @default.
- W2963746755 cites W2591784896 @default.
- W2963746755 cites W2606974598 @default.
- W2963746755 cites W2612379105 @default.
- W2963746755 cites W2962903510 @default.
- W2963746755 cites W2962965405 @default.
- W2963746755 cites W2963929190 @default.
- W2963746755 cites W71795751 @default.
- W2963746755 doi "https://doi.org/10.18653/v1/k17-1021" @default.
- W2963746755 hasPublicationYear "2017" @default.
- W2963746755 type Work @default.
- W2963746755 sameAs 2963746755 @default.
- W2963746755 citedByCount "57" @default.
- W2963746755 countsByYear W29637467552018 @default.
- W2963746755 countsByYear W29637467552019 @default.
- W2963746755 countsByYear W29637467552020 @default.
- W2963746755 countsByYear W29637467552021 @default.
- W2963746755 countsByYear W29637467552022 @default.
- W2963746755 countsByYear W29637467552023 @default.
- W2963746755 crossrefType "proceedings-article" @default.
- W2963746755 hasAuthorship W2963746755A5001151643 @default.
- W2963746755 hasAuthorship W2963746755A5018976680 @default.
- W2963746755 hasAuthorship W2963746755A5066247911 @default.
- W2963746755 hasBestOaLocation W29637467551 @default.
- W2963746755 hasConcept C104317684 @default.
- W2963746755 hasConcept C111368507 @default.
- W2963746755 hasConcept C125411270 @default.
- W2963746755 hasConcept C12725497 @default.
- W2963746755 hasConcept C127313418 @default.
- W2963746755 hasConcept C134306372 @default.
- W2963746755 hasConcept C151730666 @default.
- W2963746755 hasConcept C154945302 @default.
- W2963746755 hasConcept C185592680 @default.
- W2963746755 hasConcept C204321447 @default.
- W2963746755 hasConcept C206345919 @default.
- W2963746755 hasConcept C23123220 @default.
- W2963746755 hasConcept C2522767166 @default.
- W2963746755 hasConcept C2777530160 @default.
- W2963746755 hasConcept C2779343474 @default.
- W2963746755 hasConcept C31258907 @default.
- W2963746755 hasConcept C33923547 @default.
- W2963746755 hasConcept C36503486 @default.
- W2963746755 hasConcept C41008148 @default.
- W2963746755 hasConcept C55493867 @default.
- W2963746755 hasConcept C66746571 @default.
- W2963746755 hasConcept C86803240 @default.
- W2963746755 hasConceptScore W2963746755C104317684 @default.
- W2963746755 hasConceptScore W2963746755C111368507 @default.
- W2963746755 hasConceptScore W2963746755C125411270 @default.
- W2963746755 hasConceptScore W2963746755C12725497 @default.
- W2963746755 hasConceptScore W2963746755C127313418 @default.
- W2963746755 hasConceptScore W2963746755C134306372 @default.
- W2963746755 hasConceptScore W2963746755C151730666 @default.
- W2963746755 hasConceptScore W2963746755C154945302 @default.
- W2963746755 hasConceptScore W2963746755C185592680 @default.
- W2963746755 hasConceptScore W2963746755C204321447 @default.
- W2963746755 hasConceptScore W2963746755C206345919 @default.