Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963756875> ?p ?o ?g. }
- W2963756875 endingPage "12" @default.
- W2963756875 startingPage "1" @default.
- W2963756875 abstract "The prediction of atmospheric particulate matter (APM) concentration is essential to reduce adverse effects on human health and to enforce emission restrictions. The dynamics of APM are inherently nonlinear and chaotic. Phase space reconstruction (PSR) is one of the widely used methods for chaotic time series analysis. The APM mass concentrations are an outcome of complex anthropogenic contributors evolving with time, which may operate on multiple time scales. Thus, the traditional single-variable PSR-based prediction algorithm in which data points of last embedding dimension are used as a target set may fail to account for multiple time scales inherent in APM concentrations. To address this issue, we propose a novel PSR-based scientific solution that accounts for the information contained at multiple time scales. Different machine learning algorithms are used to evaluate the performance of the proposed and traditional PSR techniques for predicting mass concentrations of particulate matter up to 2.5 micron (PM 2.5 ), up to 10 micron (PM 10.0 ), and ratio of PM 2.5 /PM 10.0 . Hourly time series data of PM 2.5 and PM 10.0 mass concentrations are collected from January 2014 to September 2015 at the Masfalah air quality monitoring station (couple of kilometers from the Holy Mosque in Makkah, Saudi Arabia). The performances of various learning algorithms are evaluated using RMSE and MAE. The results demonstrated that prediction error of all the machine learning techniques is smaller for the proposed PSR approach compared to traditional approach. For PM 2.5 , FFNN leads to best results (both RMSE and MAE 0.04 μ gm −3 ), followed by SVR-L (RMSE 0.01 μ gm −3 and MAE 0.09 μ gm −3 ) and RF (RMSE 1.27 μ gm −3 and MAE 0.86 μ gm −3 ). For PM 10.0 , SVR-L leads to best results (both RMSE and MAE 0.06 μ gm −3 ), followed by FFNN (RMSE 0.13 μ gm −3 and MAE 0.09 μ gm −3 ) and RF (RMSE 1.60 μ gm −3 and MAE 1.16 μ gm −3 ). For PM 2.5 /PM 10.0 , FFNN is the best and accurate method for prediction (0.001 for both RMSE and MAE), followed by RF (0.02 for both RMSE and MAE) and SVR-L (RMSE 0.05 μ gm −3 and MAE 0.04)." @default.
- W2963756875 created "2019-07-30" @default.
- W2963756875 creator A5048223919 @default.
- W2963756875 creator A5049830551 @default.
- W2963756875 creator A5052856244 @default.
- W2963756875 creator A5072727701 @default.
- W2963756875 creator A5078774892 @default.
- W2963756875 creator A5082350603 @default.
- W2963756875 date "2019-07-25" @default.
- W2963756875 modified "2023-10-13" @default.
- W2963756875 title "A Novel Phase Space Reconstruction- (PSR-) Based Predictive Algorithm to Forecast Atmospheric Particulate Matter Concentration" @default.
- W2963756875 cites W116673208 @default.
- W2963756875 cites W1901857492 @default.
- W2963756875 cites W1971992146 @default.
- W2963756875 cites W1972324604 @default.
- W2963756875 cites W1974609856 @default.
- W2963756875 cites W1987756433 @default.
- W2963756875 cites W1988197785 @default.
- W2963756875 cites W1997931360 @default.
- W2963756875 cites W2007651081 @default.
- W2963756875 cites W2017506138 @default.
- W2963756875 cites W2019923639 @default.
- W2963756875 cites W2029160461 @default.
- W2963756875 cites W2031365860 @default.
- W2963756875 cites W2040704490 @default.
- W2963756875 cites W2041418843 @default.
- W2963756875 cites W2050142243 @default.
- W2963756875 cites W2059851411 @default.
- W2963756875 cites W2060123398 @default.
- W2963756875 cites W2060755421 @default.
- W2963756875 cites W2067186191 @default.
- W2963756875 cites W2067612424 @default.
- W2963756875 cites W20825669 @default.
- W2963756875 cites W2089397134 @default.
- W2963756875 cites W2107573298 @default.
- W2963756875 cites W2120589497 @default.
- W2963756875 cites W2123304299 @default.
- W2963756875 cites W2133849899 @default.
- W2963756875 cites W2517626894 @default.
- W2963756875 cites W2580803572 @default.
- W2963756875 cites W2616398284 @default.
- W2963756875 cites W2733708868 @default.
- W2963756875 cites W2753373607 @default.
- W2963756875 cites W2911964244 @default.
- W2963756875 cites W2915018599 @default.
- W2963756875 doi "https://doi.org/10.1155/2019/6780379" @default.
- W2963756875 hasPublicationYear "2019" @default.
- W2963756875 type Work @default.
- W2963756875 sameAs 2963756875 @default.
- W2963756875 citedByCount "8" @default.
- W2963756875 countsByYear W29637568752020 @default.
- W2963756875 countsByYear W29637568752021 @default.
- W2963756875 countsByYear W29637568752023 @default.
- W2963756875 crossrefType "journal-article" @default.
- W2963756875 hasAuthorship W2963756875A5048223919 @default.
- W2963756875 hasAuthorship W2963756875A5049830551 @default.
- W2963756875 hasAuthorship W2963756875A5052856244 @default.
- W2963756875 hasAuthorship W2963756875A5072727701 @default.
- W2963756875 hasAuthorship W2963756875A5078774892 @default.
- W2963756875 hasAuthorship W2963756875A5082350603 @default.
- W2963756875 hasBestOaLocation W29637568751 @default.
- W2963756875 hasConcept C11413529 @default.
- W2963756875 hasConcept C119857082 @default.
- W2963756875 hasConcept C121332964 @default.
- W2963756875 hasConcept C126857682 @default.
- W2963756875 hasConcept C127313418 @default.
- W2963756875 hasConcept C143724316 @default.
- W2963756875 hasConcept C151342819 @default.
- W2963756875 hasConcept C151406439 @default.
- W2963756875 hasConcept C151730666 @default.
- W2963756875 hasConcept C153294291 @default.
- W2963756875 hasConcept C154945302 @default.
- W2963756875 hasConcept C177264268 @default.
- W2963756875 hasConcept C178790620 @default.
- W2963756875 hasConcept C185592680 @default.
- W2963756875 hasConcept C199360897 @default.
- W2963756875 hasConcept C202444582 @default.
- W2963756875 hasConcept C24245907 @default.
- W2963756875 hasConcept C2777052490 @default.
- W2963756875 hasConcept C33676613 @default.
- W2963756875 hasConcept C33923547 @default.
- W2963756875 hasConcept C39432304 @default.
- W2963756875 hasConcept C41008148 @default.
- W2963756875 hasConcept C58489278 @default.
- W2963756875 hasConcept C97355855 @default.
- W2963756875 hasConceptScore W2963756875C11413529 @default.
- W2963756875 hasConceptScore W2963756875C119857082 @default.
- W2963756875 hasConceptScore W2963756875C121332964 @default.
- W2963756875 hasConceptScore W2963756875C126857682 @default.
- W2963756875 hasConceptScore W2963756875C127313418 @default.
- W2963756875 hasConceptScore W2963756875C143724316 @default.
- W2963756875 hasConceptScore W2963756875C151342819 @default.
- W2963756875 hasConceptScore W2963756875C151406439 @default.
- W2963756875 hasConceptScore W2963756875C151730666 @default.
- W2963756875 hasConceptScore W2963756875C153294291 @default.
- W2963756875 hasConceptScore W2963756875C154945302 @default.
- W2963756875 hasConceptScore W2963756875C177264268 @default.
- W2963756875 hasConceptScore W2963756875C178790620 @default.