Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963820199> ?p ?o ?g. }
- W2963820199 endingPage "3647" @default.
- W2963820199 startingPage "3611" @default.
- W2963820199 abstract "We develop a unified and easy to use framework to study robust fully discrete numerical methods for nonlinear degenerate diffusion equations $partial_t u-mathfrak{L}[varphi(u)]=f(x,t)$ in $mathbb{R}^Ntimes(0,T),$ where $mathfrak{L}$ is a general symmetric Lévy-type diffusion operator. Included are both local and nonlocal problems with, e.g., $mathfrak{L}=Delta$ or $mathfrak{L}=-(-Delta)^{fracalpha2}$, $alphain(0,2)$, and porous medium, fast diffusion, and Stefan-type nonlinearities $varphi$. By robust methods we mean that they converge even for nonsmooth solutions and under very weak assumptions on the data. We show that they are $L^p$-stable for $pin[1,infty]$, compact, and convergent in $C([0,T];L_{textup{loc}}^p(mathbb{R}^N))$ for $pin[1,infty)$. The first part of this project is given in [F. del Teso, J. Endal, and E. R. Jakobsen, preprint, arXiv:1801.07148v1 [math.NA], 2018] and contains the unified and easy to use theoretical framework. This paper is devoted to schemes and testing. We study many different problems and many different concrete discretizations, proving that the results of Part I apply and testing the schemes numerically. Our examples include fractional diffusions of different orders and Stefan problems, porous medium, and fast diffusion nonlinearities. Most of the convergence results and many schemes are completely new for nonlocal versions of the equation, including results on high order methods, the powers of the discrete Laplacian method, and discretizations of fast diffusions. Some of the results and schemes are new even for linear and local problems." @default.
- W2963820199 created "2019-07-30" @default.
- W2963820199 creator A5003056469 @default.
- W2963820199 creator A5025746918 @default.
- W2963820199 creator A5087229981 @default.
- W2963820199 date "2018-01-01" @default.
- W2963820199 modified "2023-10-01" @default.
- W2963820199 title "Robust Numerical Methods for Nonlocal (and Local) Equations of Porous Medium Type. Part II: Schemes and Experiments" @default.
- W2963820199 cites W1967028491 @default.
- W2963820199 cites W1973254840 @default.
- W2963820199 cites W1977360274 @default.
- W2963820199 cites W1984898295 @default.
- W2963820199 cites W1999413164 @default.
- W2963820199 cites W2005970763 @default.
- W2963820199 cites W2007927352 @default.
- W2963820199 cites W2009137576 @default.
- W2963820199 cites W2010625224 @default.
- W2963820199 cites W2016641115 @default.
- W2963820199 cites W2024406524 @default.
- W2963820199 cites W2024612023 @default.
- W2963820199 cites W2031097253 @default.
- W2963820199 cites W2037008679 @default.
- W2963820199 cites W2039427414 @default.
- W2963820199 cites W2045118704 @default.
- W2963820199 cites W2046914952 @default.
- W2963820199 cites W2051638496 @default.
- W2963820199 cites W2056274211 @default.
- W2963820199 cites W2063595285 @default.
- W2963820199 cites W2064830082 @default.
- W2963820199 cites W2070621570 @default.
- W2963820199 cites W2073691774 @default.
- W2963820199 cites W2096035658 @default.
- W2963820199 cites W2108935063 @default.
- W2963820199 cites W2123275881 @default.
- W2963820199 cites W2124303144 @default.
- W2963820199 cites W2130763970 @default.
- W2963820199 cites W2133789627 @default.
- W2963820199 cites W2144844073 @default.
- W2963820199 cites W2154885094 @default.
- W2963820199 cites W2226538084 @default.
- W2963820199 cites W2318389815 @default.
- W2963820199 cites W2427531423 @default.
- W2963820199 cites W2587973617 @default.
- W2963820199 cites W2776342372 @default.
- W2963820199 cites W2791042172 @default.
- W2963820199 cites W2963016140 @default.
- W2963820199 cites W2963176574 @default.
- W2963820199 cites W2963271176 @default.
- W2963820199 cites W2963312336 @default.
- W2963820199 cites W2963745149 @default.
- W2963820199 cites W2964340258 @default.
- W2963820199 cites W3099142968 @default.
- W2963820199 cites W3102224879 @default.
- W2963820199 cites W3103229763 @default.
- W2963820199 cites W3105873983 @default.
- W2963820199 cites W4246379805 @default.
- W2963820199 cites W4297968680 @default.
- W2963820199 cites W61439753 @default.
- W2963820199 doi "https://doi.org/10.1137/18m1180748" @default.
- W2963820199 hasPublicationYear "2018" @default.
- W2963820199 type Work @default.
- W2963820199 sameAs 2963820199 @default.
- W2963820199 citedByCount "37" @default.
- W2963820199 countsByYear W29638201992017 @default.
- W2963820199 countsByYear W29638201992018 @default.
- W2963820199 countsByYear W29638201992019 @default.
- W2963820199 countsByYear W29638201992020 @default.
- W2963820199 countsByYear W29638201992021 @default.
- W2963820199 countsByYear W29638201992022 @default.
- W2963820199 countsByYear W29638201992023 @default.
- W2963820199 crossrefType "journal-article" @default.
- W2963820199 hasAuthorship W2963820199A5003056469 @default.
- W2963820199 hasAuthorship W2963820199A5025746918 @default.
- W2963820199 hasAuthorship W2963820199A5087229981 @default.
- W2963820199 hasBestOaLocation W29638201992 @default.
- W2963820199 hasConcept C10138342 @default.
- W2963820199 hasConcept C104317684 @default.
- W2963820199 hasConcept C105569014 @default.
- W2963820199 hasConcept C114614502 @default.
- W2963820199 hasConcept C121332964 @default.
- W2963820199 hasConcept C127413603 @default.
- W2963820199 hasConcept C134306372 @default.
- W2963820199 hasConcept C158448853 @default.
- W2963820199 hasConcept C162324750 @default.
- W2963820199 hasConcept C17020691 @default.
- W2963820199 hasConcept C182306322 @default.
- W2963820199 hasConcept C185592680 @default.
- W2963820199 hasConcept C187320778 @default.
- W2963820199 hasConcept C18903297 @default.
- W2963820199 hasConcept C202444582 @default.
- W2963820199 hasConcept C2777299769 @default.
- W2963820199 hasConcept C2777303404 @default.
- W2963820199 hasConcept C28826006 @default.
- W2963820199 hasConcept C33923547 @default.
- W2963820199 hasConcept C37914503 @default.
- W2963820199 hasConcept C43169469 @default.
- W2963820199 hasConcept C50522688 @default.
- W2963820199 hasConcept C55493867 @default.