Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963829291> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2963829291 endingPage "769" @default.
- W2963829291 startingPage "760" @default.
- W2963829291 abstract "Abstract This paper proposes and develops a cascaded deep neural network (CDNN) to analyze data, collected using the sensors of smart-phones, to accurately localize an object in an indoor environment. The indoor localization of an object (living or non-living) is important now a days, especially for those living alone or for securing valuable things. There are many existing studies that have attempted to identify the location of an inhabitant in a room through the analysis of the radio signal strength (RSS), with varying success. The strength of the RSS varies with distance and the presence of obstacles within the line of sight. As a result, an automated system using RSS signal in one environment might not work in another one. In this paper therefore, we propose and develop a different localization method based on data collected from different sensors embedded in a smart-phone. To analyze and predict the exact location within a very short distance (say a 1 to 1.5 m radius), we develop a novel CDNN. In this model, several deep neural networks (DNNs) are used in a tree structure where each node of the tree is an independent DNN. The output of any parent DNN at a specific node is used to decide which child node will be used to localize the position of an object. The combination of smart phone sensor data and the CDNN is applied in an academic building with an area of 175 m 2 . The experimental results show that the proposed method can localize the subject/IoT object with a 74.17% accuracy within a 1.5 m radius and a 53% (approx.) accuracy within a 1 m radius. These performances are higher than those reported in many recent studies." @default.
- W2963829291 created "2019-07-30" @default.
- W2963829291 creator A5045709972 @default.
- W2963829291 creator A5046054978 @default.
- W2963829291 creator A5049492019 @default.
- W2963829291 creator A5080966304 @default.
- W2963829291 creator A5085933596 @default.
- W2963829291 date "2019-12-01" @default.
- W2963829291 modified "2023-09-25" @default.
- W2963829291 title "A novel cascaded deep neural network for analyzing smart phone data for indoor localization" @default.
- W2963829291 cites W1956618308 @default.
- W2963829291 cites W2055033894 @default.
- W2963829291 cites W2116070975 @default.
- W2963829291 cites W2132952395 @default.
- W2963829291 cites W2145216788 @default.
- W2963829291 cites W2163922914 @default.
- W2963829291 cites W2313528934 @default.
- W2963829291 cites W2606698885 @default.
- W2963829291 cites W2607216769 @default.
- W2963829291 cites W2666784499 @default.
- W2963829291 cites W2782386559 @default.
- W2963829291 cites W2795613961 @default.
- W2963829291 cites W2800371130 @default.
- W2963829291 cites W2888704015 @default.
- W2963829291 cites W2891691179 @default.
- W2963829291 cites W2893731701 @default.
- W2963829291 cites W2903610530 @default.
- W2963829291 doi "https://doi.org/10.1016/j.future.2019.07.012" @default.
- W2963829291 hasPublicationYear "2019" @default.
- W2963829291 type Work @default.
- W2963829291 sameAs 2963829291 @default.
- W2963829291 citedByCount "13" @default.
- W2963829291 countsByYear W29638292912019 @default.
- W2963829291 countsByYear W29638292912020 @default.
- W2963829291 countsByYear W29638292912021 @default.
- W2963829291 countsByYear W29638292912022 @default.
- W2963829291 countsByYear W29638292912023 @default.
- W2963829291 crossrefType "journal-article" @default.
- W2963829291 hasAuthorship W2963829291A5045709972 @default.
- W2963829291 hasAuthorship W2963829291A5046054978 @default.
- W2963829291 hasAuthorship W2963829291A5049492019 @default.
- W2963829291 hasAuthorship W2963829291A5080966304 @default.
- W2963829291 hasAuthorship W2963829291A5085933596 @default.
- W2963829291 hasConcept C138885662 @default.
- W2963829291 hasConcept C149635348 @default.
- W2963829291 hasConcept C154945302 @default.
- W2963829291 hasConcept C2778707766 @default.
- W2963829291 hasConcept C2984771860 @default.
- W2963829291 hasConcept C2984842247 @default.
- W2963829291 hasConcept C41008148 @default.
- W2963829291 hasConcept C41895202 @default.
- W2963829291 hasConcept C50644808 @default.
- W2963829291 hasConcept C76155785 @default.
- W2963829291 hasConcept C79403827 @default.
- W2963829291 hasConceptScore W2963829291C138885662 @default.
- W2963829291 hasConceptScore W2963829291C149635348 @default.
- W2963829291 hasConceptScore W2963829291C154945302 @default.
- W2963829291 hasConceptScore W2963829291C2778707766 @default.
- W2963829291 hasConceptScore W2963829291C2984771860 @default.
- W2963829291 hasConceptScore W2963829291C2984842247 @default.
- W2963829291 hasConceptScore W2963829291C41008148 @default.
- W2963829291 hasConceptScore W2963829291C41895202 @default.
- W2963829291 hasConceptScore W2963829291C50644808 @default.
- W2963829291 hasConceptScore W2963829291C76155785 @default.
- W2963829291 hasConceptScore W2963829291C79403827 @default.
- W2963829291 hasLocation W29638292911 @default.
- W2963829291 hasOpenAccess W2963829291 @default.
- W2963829291 hasPrimaryLocation W29638292911 @default.
- W2963829291 hasRelatedWork W1838043264 @default.
- W2963829291 hasRelatedWork W2028008375 @default.
- W2963829291 hasRelatedWork W2068174027 @default.
- W2963829291 hasRelatedWork W2129239766 @default.
- W2963829291 hasRelatedWork W2361040995 @default.
- W2963829291 hasRelatedWork W2371117521 @default.
- W2963829291 hasRelatedWork W2392497892 @default.
- W2963829291 hasRelatedWork W2885122581 @default.
- W2963829291 hasRelatedWork W2921756326 @default.
- W2963829291 hasRelatedWork W2963829291 @default.
- W2963829291 hasVolume "101" @default.
- W2963829291 isParatext "false" @default.
- W2963829291 isRetracted "false" @default.
- W2963829291 magId "2963829291" @default.
- W2963829291 workType "article" @default.