Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963875807> ?p ?o ?g. }
- W2963875807 endingPage "5318" @default.
- W2963875807 startingPage "5305" @default.
- W2963875807 abstract "This paper investigates the problem of dynamic spectrum access for canonical wireless networks, in which the channel states are time-varying. In the most existing work, the commonly used optimization objective is to maximize the expectation of a certain metric (e.g., throughput or achievable rate). However, it is realized that expectation alone is not enough since some applications are sensitive to fluctuations. Effective capacity is a promising metric for time-varying service process since it characterizes the packet delay violating probability (regarded as an important statistical quality-of-service index), by taking into account not only the expectation but also other high-order statistic. Therefore, we formulate the interactions among the users in the time-varying environment as a non-cooperative game, in which the utility function is defined as the achieved effective capacity. We prove that it is an ordinal potential game which has at least one pure strategy Nash equilibrium. Based on an approximated utility function, we propose a multi-agent learning algorithm which is proved to achieve stable solutions with dynamic and incomplete information constraints. The convergence of the proposed learning algorithm is verified by simulation results. Also, it is shown that the proposed multi-agent learning algorithm achieves satisfactory performance." @default.
- W2963875807 created "2019-07-30" @default.
- W2963875807 creator A5014664356 @default.
- W2963875807 creator A5019608888 @default.
- W2963875807 creator A5050325851 @default.
- W2963875807 creator A5068912643 @default.
- W2963875807 creator A5074463174 @default.
- W2963875807 creator A5091127487 @default.
- W2963875807 date "2017-12-01" @default.
- W2963875807 modified "2023-10-16" @default.
- W2963875807 title "Dynamic Spectrum Access in Time-Varying Environment: Distributed Learning Beyond Expectation Optimization" @default.
- W2963875807 cites W1855445777 @default.
- W2963875807 cites W1978375026 @default.
- W2963875807 cites W1982597307 @default.
- W2963875807 cites W1990521196 @default.
- W2963875807 cites W1992070920 @default.
- W2963875807 cites W1993602208 @default.
- W2963875807 cites W2011383489 @default.
- W2963875807 cites W2025758836 @default.
- W2963875807 cites W2038127484 @default.
- W2963875807 cites W2038136736 @default.
- W2963875807 cites W2049471975 @default.
- W2963875807 cites W2063699457 @default.
- W2963875807 cites W2068562910 @default.
- W2963875807 cites W2071707134 @default.
- W2963875807 cites W2072737651 @default.
- W2963875807 cites W2098369329 @default.
- W2963875807 cites W2103933490 @default.
- W2963875807 cites W2106645256 @default.
- W2963875807 cites W2111024192 @default.
- W2963875807 cites W2114424829 @default.
- W2963875807 cites W2115459592 @default.
- W2963875807 cites W2120389433 @default.
- W2963875807 cites W2121528570 @default.
- W2963875807 cites W2122029172 @default.
- W2963875807 cites W2123447220 @default.
- W2963875807 cites W2125618349 @default.
- W2963875807 cites W2131156155 @default.
- W2963875807 cites W2134901427 @default.
- W2963875807 cites W2136917018 @default.
- W2963875807 cites W2136957911 @default.
- W2963875807 cites W2140571193 @default.
- W2963875807 cites W2141288533 @default.
- W2963875807 cites W2142819538 @default.
- W2963875807 cites W2143001213 @default.
- W2963875807 cites W2144369278 @default.
- W2963875807 cites W2147600250 @default.
- W2963875807 cites W2150175499 @default.
- W2963875807 cites W2156198162 @default.
- W2963875807 cites W2157473159 @default.
- W2963875807 cites W2162417209 @default.
- W2963875807 cites W2168078104 @default.
- W2963875807 cites W2169194711 @default.
- W2963875807 cites W2170577762 @default.
- W2963875807 cites W2274518346 @default.
- W2963875807 cites W3022321359 @default.
- W2963875807 cites W3106458633 @default.
- W2963875807 doi "https://doi.org/10.1109/tcomm.2017.2734768" @default.
- W2963875807 hasPublicationYear "2017" @default.
- W2963875807 type Work @default.
- W2963875807 sameAs 2963875807 @default.
- W2963875807 citedByCount "58" @default.
- W2963875807 countsByYear W29638758072018 @default.
- W2963875807 countsByYear W29638758072019 @default.
- W2963875807 countsByYear W29638758072020 @default.
- W2963875807 countsByYear W29638758072021 @default.
- W2963875807 countsByYear W29638758072022 @default.
- W2963875807 countsByYear W29638758072023 @default.
- W2963875807 crossrefType "journal-article" @default.
- W2963875807 hasAuthorship W2963875807A5014664356 @default.
- W2963875807 hasAuthorship W2963875807A5019608888 @default.
- W2963875807 hasAuthorship W2963875807A5050325851 @default.
- W2963875807 hasAuthorship W2963875807A5068912643 @default.
- W2963875807 hasAuthorship W2963875807A5074463174 @default.
- W2963875807 hasAuthorship W2963875807A5091127487 @default.
- W2963875807 hasBestOaLocation W29638758072 @default.
- W2963875807 hasConcept C110313322 @default.
- W2963875807 hasConcept C119857082 @default.
- W2963875807 hasConcept C126255220 @default.
- W2963875807 hasConcept C154945302 @default.
- W2963875807 hasConcept C162324750 @default.
- W2963875807 hasConcept C176217482 @default.
- W2963875807 hasConcept C187736073 @default.
- W2963875807 hasConcept C188116033 @default.
- W2963875807 hasConcept C21547014 @default.
- W2963875807 hasConcept C2777303404 @default.
- W2963875807 hasConcept C2778079155 @default.
- W2963875807 hasConcept C2780898871 @default.
- W2963875807 hasConcept C31258907 @default.
- W2963875807 hasConcept C33923547 @default.
- W2963875807 hasConcept C41008148 @default.
- W2963875807 hasConcept C46814582 @default.
- W2963875807 hasConcept C50522688 @default.
- W2963875807 hasConcept C5119721 @default.
- W2963875807 hasConcept C81386100 @default.
- W2963875807 hasConcept C97541855 @default.
- W2963875807 hasConceptScore W2963875807C110313322 @default.
- W2963875807 hasConceptScore W2963875807C119857082 @default.