Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963888082> ?p ?o ?g. }
- W2963888082 endingPage "1454" @default.
- W2963888082 startingPage "1425" @default.
- W2963888082 abstract "We consider tomographic reconstruction using priors in the form of a dictionary learned from training images. The reconstruction has two stages: first we construct a tensor dictionary prior from our training data, and then we pose the reconstruction problem in terms of recovering the expansion coefficients in that dictionary. Our approach differs from past approaches in that (a) we use a third-order tensor representation for our images and (b) we recast the reconstruction problem using the tensor formulation. The dictionary learning problem is presented as a non-negative tensor factorization problem with sparsity constraints. The reconstruction problem is formulated in a convex optimization framework by looking for a solution with a sparse representation in the tensor dictionary. Numerical results show that our tensor formulation leads to very sparse representations of both the training images and the reconstructions due to the ability of representing repeated features compactly in the dictionary." @default.
- W2963888082 created "2019-07-30" @default.
- W2963888082 creator A5024716088 @default.
- W2963888082 creator A5039737516 @default.
- W2963888082 creator A5041916316 @default.
- W2963888082 date "2016-02-03" @default.
- W2963888082 modified "2023-09-27" @default.
- W2963888082 title "A tensor-based dictionary learning approach to tomographic image reconstruction" @default.
- W2963888082 cites W15671940 @default.
- W2963888082 cites W1765998458 @default.
- W2963888082 cites W1846534543 @default.
- W2963888082 cites W1902027874 @default.
- W2963888082 cites W1946620893 @default.
- W2963888082 cites W1963826206 @default.
- W2963888082 cites W1974636210 @default.
- W2963888082 cites W1975185047 @default.
- W2963888082 cites W1976709621 @default.
- W2963888082 cites W1979074964 @default.
- W2963888082 cites W1986326495 @default.
- W2963888082 cites W1991456038 @default.
- W2963888082 cites W1992426838 @default.
- W2963888082 cites W2000015923 @default.
- W2963888082 cites W2006808740 @default.
- W2963888082 cites W2023630749 @default.
- W2963888082 cites W2024165284 @default.
- W2963888082 cites W2030927653 @default.
- W2963888082 cites W2043571470 @default.
- W2963888082 cites W2046470130 @default.
- W2963888082 cites W2056758595 @default.
- W2963888082 cites W2057538344 @default.
- W2963888082 cites W2063509716 @default.
- W2963888082 cites W2086777366 @default.
- W2963888082 cites W2094366314 @default.
- W2963888082 cites W2096309518 @default.
- W2963888082 cites W2097726319 @default.
- W2963888082 cites W2103972604 @default.
- W2963888082 cites W2112009428 @default.
- W2963888082 cites W2119058682 @default.
- W2963888082 cites W2119449648 @default.
- W2963888082 cites W2133665775 @default.
- W2963888082 cites W2139208832 @default.
- W2963888082 cites W2145889472 @default.
- W2963888082 cites W2153663612 @default.
- W2963888082 cites W2160547390 @default.
- W2963888082 cites W2404400936 @default.
- W2963888082 cites W3099831354 @default.
- W2963888082 cites W4235713725 @default.
- W2963888082 cites W4292363360 @default.
- W2963888082 cites W613352991 @default.
- W2963888082 doi "https://doi.org/10.1007/s10543-016-0607-z" @default.
- W2963888082 hasPublicationYear "2016" @default.
- W2963888082 type Work @default.
- W2963888082 sameAs 2963888082 @default.
- W2963888082 citedByCount "57" @default.
- W2963888082 countsByYear W29638880822015 @default.
- W2963888082 countsByYear W29638880822016 @default.
- W2963888082 countsByYear W29638880822017 @default.
- W2963888082 countsByYear W29638880822018 @default.
- W2963888082 countsByYear W29638880822019 @default.
- W2963888082 countsByYear W29638880822020 @default.
- W2963888082 countsByYear W29638880822021 @default.
- W2963888082 countsByYear W29638880822022 @default.
- W2963888082 countsByYear W29638880822023 @default.
- W2963888082 crossrefType "journal-article" @default.
- W2963888082 hasAuthorship W2963888082A5024716088 @default.
- W2963888082 hasAuthorship W2963888082A5039737516 @default.
- W2963888082 hasAuthorship W2963888082A5041916316 @default.
- W2963888082 hasBestOaLocation W29638880822 @default.
- W2963888082 hasConcept C107673813 @default.
- W2963888082 hasConcept C11413529 @default.
- W2963888082 hasConcept C124066611 @default.
- W2963888082 hasConcept C141379421 @default.
- W2963888082 hasConcept C153180895 @default.
- W2963888082 hasConcept C154771677 @default.
- W2963888082 hasConcept C154945302 @default.
- W2963888082 hasConcept C155281189 @default.
- W2963888082 hasConcept C17744445 @default.
- W2963888082 hasConcept C177769412 @default.
- W2963888082 hasConcept C199539241 @default.
- W2963888082 hasConcept C202444582 @default.
- W2963888082 hasConcept C2776359362 @default.
- W2963888082 hasConcept C2988886741 @default.
- W2963888082 hasConcept C33923547 @default.
- W2963888082 hasConcept C41008148 @default.
- W2963888082 hasConcept C94625758 @default.
- W2963888082 hasConcept C97742081 @default.
- W2963888082 hasConceptScore W2963888082C107673813 @default.
- W2963888082 hasConceptScore W2963888082C11413529 @default.
- W2963888082 hasConceptScore W2963888082C124066611 @default.
- W2963888082 hasConceptScore W2963888082C141379421 @default.
- W2963888082 hasConceptScore W2963888082C153180895 @default.
- W2963888082 hasConceptScore W2963888082C154771677 @default.
- W2963888082 hasConceptScore W2963888082C154945302 @default.
- W2963888082 hasConceptScore W2963888082C155281189 @default.
- W2963888082 hasConceptScore W2963888082C17744445 @default.
- W2963888082 hasConceptScore W2963888082C177769412 @default.
- W2963888082 hasConceptScore W2963888082C199539241 @default.
- W2963888082 hasConceptScore W2963888082C202444582 @default.