Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963896186> ?p ?o ?g. }
- W2963896186 endingPage "161" @default.
- W2963896186 startingPage "144" @default.
- W2963896186 abstract "Convolutional neural networks (CNN) are limited by the lack of capability to handle geometric information due to the fixed grid kernel structure. The availability of depth data enables progress in RGB-D semantic segmentation with CNNs. State-of-the-art methods either use depth as additional images or process spatial information in 3D volumes or point clouds. These methods suffer from high computation and memory cost. To address these issues, we present Depth-aware CNN by introducing two intuitive, flexible and effective operations: depth-aware convolution and depth-aware average pooling. By leveraging depth similarity between pixels in the process of information propagation, geometry is seamlessly incorporated into CNN. Without introducing any additional parameters, both operators can be easily integrated into existing CNNs. Extensive experiments and ablation studies on challenging RGB-D semantic segmentation benchmarks validate the effectiveness and flexibility of our approach." @default.
- W2963896186 created "2019-07-30" @default.
- W2963896186 creator A5006737674 @default.
- W2963896186 creator A5082235583 @default.
- W2963896186 date "2018-01-01" @default.
- W2963896186 modified "2023-10-16" @default.
- W2963896186 title "Depth-Aware CNN for RGB-D Segmentation" @default.
- W2963896186 cites W125693051 @default.
- W2963896186 cites W1565402342 @default.
- W2963896186 cites W1905829557 @default.
- W2963896186 cites W1923184257 @default.
- W2963896186 cites W2098883970 @default.
- W2963896186 cites W2122422695 @default.
- W2963896186 cites W2194775991 @default.
- W2963896186 cites W2229637417 @default.
- W2963896186 cites W2254462240 @default.
- W2963896186 cites W2339172515 @default.
- W2963896186 cites W2485522583 @default.
- W2963896186 cites W2489780108 @default.
- W2963896186 cites W2557465155 @default.
- W2963896186 cites W2563705555 @default.
- W2963896186 cites W2587989515 @default.
- W2963896186 cites W2601564443 @default.
- W2963896186 cites W2604455318 @default.
- W2963896186 cites W2609822318 @default.
- W2963896186 cites W2736551994 @default.
- W2963896186 cites W2737258237 @default.
- W2963896186 cites W2769312834 @default.
- W2963896186 cites W2776622059 @default.
- W2963896186 cites W2777686015 @default.
- W2963896186 cites W2963517242 @default.
- W2963896186 cites W2963622297 @default.
- W2963896186 cites W3139167831 @default.
- W2963896186 doi "https://doi.org/10.1007/978-3-030-01252-6_9" @default.
- W2963896186 hasPublicationYear "2018" @default.
- W2963896186 type Work @default.
- W2963896186 sameAs 2963896186 @default.
- W2963896186 citedByCount "152" @default.
- W2963896186 countsByYear W29638961862018 @default.
- W2963896186 countsByYear W29638961862019 @default.
- W2963896186 countsByYear W29638961862020 @default.
- W2963896186 countsByYear W29638961862021 @default.
- W2963896186 countsByYear W29638961862022 @default.
- W2963896186 countsByYear W29638961862023 @default.
- W2963896186 crossrefType "book-chapter" @default.
- W2963896186 hasAuthorship W2963896186A5006737674 @default.
- W2963896186 hasAuthorship W2963896186A5082235583 @default.
- W2963896186 hasBestOaLocation W29638961862 @default.
- W2963896186 hasConcept C110384440 @default.
- W2963896186 hasConcept C111919701 @default.
- W2963896186 hasConcept C11413529 @default.
- W2963896186 hasConcept C114614502 @default.
- W2963896186 hasConcept C115961682 @default.
- W2963896186 hasConcept C131979681 @default.
- W2963896186 hasConcept C153180895 @default.
- W2963896186 hasConcept C154945302 @default.
- W2963896186 hasConcept C160633673 @default.
- W2963896186 hasConcept C31972630 @default.
- W2963896186 hasConcept C33923547 @default.
- W2963896186 hasConcept C41008148 @default.
- W2963896186 hasConcept C45347329 @default.
- W2963896186 hasConcept C45374587 @default.
- W2963896186 hasConcept C50644808 @default.
- W2963896186 hasConcept C70437156 @default.
- W2963896186 hasConcept C74193536 @default.
- W2963896186 hasConcept C81363708 @default.
- W2963896186 hasConcept C82990744 @default.
- W2963896186 hasConcept C89600930 @default.
- W2963896186 hasConcept C98045186 @default.
- W2963896186 hasConceptScore W2963896186C110384440 @default.
- W2963896186 hasConceptScore W2963896186C111919701 @default.
- W2963896186 hasConceptScore W2963896186C11413529 @default.
- W2963896186 hasConceptScore W2963896186C114614502 @default.
- W2963896186 hasConceptScore W2963896186C115961682 @default.
- W2963896186 hasConceptScore W2963896186C131979681 @default.
- W2963896186 hasConceptScore W2963896186C153180895 @default.
- W2963896186 hasConceptScore W2963896186C154945302 @default.
- W2963896186 hasConceptScore W2963896186C160633673 @default.
- W2963896186 hasConceptScore W2963896186C31972630 @default.
- W2963896186 hasConceptScore W2963896186C33923547 @default.
- W2963896186 hasConceptScore W2963896186C41008148 @default.
- W2963896186 hasConceptScore W2963896186C45347329 @default.
- W2963896186 hasConceptScore W2963896186C45374587 @default.
- W2963896186 hasConceptScore W2963896186C50644808 @default.
- W2963896186 hasConceptScore W2963896186C70437156 @default.
- W2963896186 hasConceptScore W2963896186C74193536 @default.
- W2963896186 hasConceptScore W2963896186C81363708 @default.
- W2963896186 hasConceptScore W2963896186C82990744 @default.
- W2963896186 hasConceptScore W2963896186C89600930 @default.
- W2963896186 hasConceptScore W2963896186C98045186 @default.
- W2963896186 hasLocation W29638961861 @default.
- W2963896186 hasLocation W29638961862 @default.
- W2963896186 hasOpenAccess W2963896186 @default.
- W2963896186 hasPrimaryLocation W29638961861 @default.
- W2963896186 hasRelatedWork W2559156603 @default.
- W2963896186 hasRelatedWork W2949066288 @default.
- W2963896186 hasRelatedWork W2967990525 @default.
- W2963896186 hasRelatedWork W2987852271 @default.