Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963919692> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2963919692 endingPage "243" @default.
- W2963919692 startingPage "197" @default.
- W2963919692 abstract "In 1980, Lusztig introduced the periodic Kazhdan-Lusztig polynomials, which are conjectured to have important information about the characters of irreducible modules of a reductive group over a field of positive characteristic, and also about those of an affine Kac-Moody algebra at the critical level. The periodic Kazhdan-Lusztig polynomials can be computed by using another family of polynomials, called the periodic $R$-polynomials. In this paper, we prove a (closed) combinatorial formula expressing periodic $R$-polynomials in terms of the doubled Bruhat graph associated to a finite Weyl group and a finite root system." @default.
- W2963919692 created "2019-07-30" @default.
- W2963919692 creator A5022697295 @default.
- W2963919692 creator A5032570626 @default.
- W2963919692 date "2017-05-01" @default.
- W2963919692 modified "2023-09-30" @default.
- W2963919692 title "A combinatorial formula expressing periodic R-polynomials" @default.
- W2963919692 cites W1830446959 @default.
- W2963919692 cites W1970550083 @default.
- W2963919692 cites W1986067975 @default.
- W2963919692 cites W1988151580 @default.
- W2963919692 cites W2014545190 @default.
- W2963919692 cites W2015559101 @default.
- W2963919692 cites W2080685809 @default.
- W2963919692 cites W2963343025 @default.
- W2963919692 doi "https://doi.org/10.1016/j.jcta.2016.12.008" @default.
- W2963919692 hasPublicationYear "2017" @default.
- W2963919692 type Work @default.
- W2963919692 sameAs 2963919692 @default.
- W2963919692 citedByCount "2" @default.
- W2963919692 countsByYear W29639196922016 @default.
- W2963919692 countsByYear W29639196922021 @default.
- W2963919692 crossrefType "journal-article" @default.
- W2963919692 hasAuthorship W2963919692A5022697295 @default.
- W2963919692 hasAuthorship W2963919692A5032570626 @default.
- W2963919692 hasBestOaLocation W29639196921 @default.
- W2963919692 hasConcept C114614502 @default.
- W2963919692 hasConcept C33923547 @default.
- W2963919692 hasConceptScore W2963919692C114614502 @default.
- W2963919692 hasConceptScore W2963919692C33923547 @default.
- W2963919692 hasLocation W29639196921 @default.
- W2963919692 hasLocation W29639196922 @default.
- W2963919692 hasOpenAccess W2963919692 @default.
- W2963919692 hasPrimaryLocation W29639196921 @default.
- W2963919692 hasRelatedWork W1974891317 @default.
- W2963919692 hasRelatedWork W1978042415 @default.
- W2963919692 hasRelatedWork W2017331178 @default.
- W2963919692 hasRelatedWork W2044189972 @default.
- W2963919692 hasRelatedWork W2260035625 @default.
- W2963919692 hasRelatedWork W2313400459 @default.
- W2963919692 hasRelatedWork W2913765211 @default.
- W2963919692 hasRelatedWork W2976797620 @default.
- W2963919692 hasRelatedWork W3086542228 @default.
- W2963919692 hasRelatedWork W4245490552 @default.
- W2963919692 hasVolume "148" @default.
- W2963919692 isParatext "false" @default.
- W2963919692 isRetracted "false" @default.
- W2963919692 magId "2963919692" @default.
- W2963919692 workType "article" @default.