Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963926543> ?p ?o ?g. }
- W2963926543 abstract "With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks." @default.
- W2963926543 created "2019-07-30" @default.
- W2963926543 creator A5000291599 @default.
- W2963926543 creator A5016606943 @default.
- W2963926543 creator A5055590646 @default.
- W2963926543 creator A5072305321 @default.
- W2963926543 creator A5088795883 @default.
- W2963926543 date "2019-06-01" @default.
- W2963926543 modified "2023-10-14" @default.
- W2963926543 title "Occupancy Networks: Learning 3D Reconstruction in Function Space" @default.
- W2963926543 cites W1521328770 @default.
- W2963926543 cites W1583399309 @default.
- W2963926543 cites W1845536947 @default.
- W2963926543 cites W1966634937 @default.
- W2963926543 cites W1991113069 @default.
- W2963926543 cites W1992642990 @default.
- W2963926543 cites W2009422376 @default.
- W2963926543 cites W2053825465 @default.
- W2963926543 cites W2074954154 @default.
- W2963926543 cites W2078000663 @default.
- W2963926543 cites W2101744775 @default.
- W2963926543 cites W2112594540 @default.
- W2963926543 cites W2115579991 @default.
- W2963926543 cites W2121535648 @default.
- W2963926543 cites W2137610415 @default.
- W2963926543 cites W2155343350 @default.
- W2963926543 cites W2167141871 @default.
- W2963926543 cites W2174133987 @default.
- W2963926543 cites W2194775991 @default.
- W2963926543 cites W2211722331 @default.
- W2963926543 cites W2229412420 @default.
- W2963926543 cites W2229637417 @default.
- W2963926543 cites W2254644702 @default.
- W2963926543 cites W2342277278 @default.
- W2963926543 cites W2556802233 @default.
- W2963926543 cites W2558748708 @default.
- W2963926543 cites W2559882727 @default.
- W2963926543 cites W2560722161 @default.
- W2963926543 cites W2582734987 @default.
- W2963926543 cites W2603429625 @default.
- W2963926543 cites W2748512037 @default.
- W2963926543 cites W2779856146 @default.
- W2963926543 cites W2798314605 @default.
- W2963926543 cites W2798670728 @default.
- W2963926543 cites W2798856139 @default.
- W2963926543 cites W2890382763 @default.
- W2963926543 cites W2913225681 @default.
- W2963926543 cites W2962731536 @default.
- W2963926543 cites W2962778872 @default.
- W2963926543 cites W2962849139 @default.
- W2963926543 cites W2962988048 @default.
- W2963926543 cites W2963026686 @default.
- W2963926543 cites W2963627347 @default.
- W2963926543 cites W2963739349 @default.
- W2963926543 cites W2963800363 @default.
- W2963926543 cites W2963995996 @default.
- W2963926543 cites W3102132650 @default.
- W2963926543 cites W3141742114 @default.
- W2963926543 doi "https://doi.org/10.1109/cvpr.2019.00459" @default.
- W2963926543 hasPublicationYear "2019" @default.
- W2963926543 type Work @default.
- W2963926543 sameAs 2963926543 @default.
- W2963926543 citedByCount "1410" @default.
- W2963926543 countsByYear W29639265432018 @default.
- W2963926543 countsByYear W29639265432019 @default.
- W2963926543 countsByYear W29639265432020 @default.
- W2963926543 countsByYear W29639265432021 @default.
- W2963926543 countsByYear W29639265432022 @default.
- W2963926543 countsByYear W29639265432023 @default.
- W2963926543 crossrefType "proceedings-article" @default.
- W2963926543 hasAuthorship W2963926543A5000291599 @default.
- W2963926543 hasAuthorship W2963926543A5016606943 @default.
- W2963926543 hasAuthorship W2963926543A5055590646 @default.
- W2963926543 hasAuthorship W2963926543A5072305321 @default.
- W2963926543 hasAuthorship W2963926543A5088795883 @default.
- W2963926543 hasBestOaLocation W29639265432 @default.
- W2963926543 hasConcept C108583219 @default.
- W2963926543 hasConcept C111919701 @default.
- W2963926543 hasConcept C119857082 @default.
- W2963926543 hasConcept C131979681 @default.
- W2963926543 hasConcept C153180895 @default.
- W2963926543 hasConcept C154945302 @default.
- W2963926543 hasConcept C17744445 @default.
- W2963926543 hasConcept C199539241 @default.
- W2963926543 hasConcept C2776359362 @default.
- W2963926543 hasConcept C41008148 @default.
- W2963926543 hasConcept C50644808 @default.
- W2963926543 hasConcept C59404180 @default.
- W2963926543 hasConcept C74912251 @default.
- W2963926543 hasConcept C80444323 @default.
- W2963926543 hasConcept C81363708 @default.
- W2963926543 hasConcept C94625758 @default.
- W2963926543 hasConceptScore W2963926543C108583219 @default.
- W2963926543 hasConceptScore W2963926543C111919701 @default.
- W2963926543 hasConceptScore W2963926543C119857082 @default.
- W2963926543 hasConceptScore W2963926543C131979681 @default.
- W2963926543 hasConceptScore W2963926543C153180895 @default.
- W2963926543 hasConceptScore W2963926543C154945302 @default.
- W2963926543 hasConceptScore W2963926543C17744445 @default.
- W2963926543 hasConceptScore W2963926543C199539241 @default.