Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963938442> ?p ?o ?g. }
- W2963938442 abstract "We study the problem of semi-supervised question answering----utilizing unlabeled text to boost the performance of question answering models. We propose a novel training framework, the Generative Domain-Adaptive Nets. In this framework, we train a generative model to generate questions based on the unlabeled text, and combine model-generated questions with human-generated questions for training question answering models. We develop novel domain adaptation algorithms, based on reinforcement learning, to alleviate the discrepancy between the model-generated data distribution and the human-generated data distribution. Experiments show that our proposed framework obtains substantial improvement from unlabeled text." @default.
- W2963938442 created "2019-07-30" @default.
- W2963938442 creator A5037034281 @default.
- W2963938442 creator A5051617344 @default.
- W2963938442 creator A5071983998 @default.
- W2963938442 creator A5085263462 @default.
- W2963938442 date "2017-01-01" @default.
- W2963938442 modified "2023-10-17" @default.
- W2963938442 title "Semi-Supervised QA with Generative Domain-Adaptive Nets" @default.
- W2963938442 cites W1630959083 @default.
- W2963938442 cites W1915251500 @default.
- W2963938442 cites W1924770834 @default.
- W2963938442 cites W2028175314 @default.
- W2963938442 cites W2064447488 @default.
- W2963938442 cites W2096765155 @default.
- W2963938442 cites W2099471712 @default.
- W2963938442 cites W2108501770 @default.
- W2963938442 cites W2115403315 @default.
- W2963938442 cites W2125436846 @default.
- W2963938442 cites W2128053425 @default.
- W2963938442 cites W2130942839 @default.
- W2963938442 cites W2136504847 @default.
- W2963938442 cites W2145094598 @default.
- W2963938442 cites W2149466042 @default.
- W2963938442 cites W2159291411 @default.
- W2963938442 cites W2251818205 @default.
- W2963938442 cites W2252136820 @default.
- W2963938442 cites W22861983 @default.
- W2963938442 cites W2516930406 @default.
- W2963938442 cites W2546938941 @default.
- W2963938442 cites W2551396370 @default.
- W2963938442 cites W2557764419 @default.
- W2963938442 cites W2566011400 @default.
- W2963938442 cites W2744813330 @default.
- W2963938442 cites W2951184134 @default.
- W2963938442 cites W2951534261 @default.
- W2963938442 cites W2962809918 @default.
- W2963938442 cites W2962944953 @default.
- W2963938442 cites W2963019137 @default.
- W2963938442 cites W2963260202 @default.
- W2963938442 cites W2963312446 @default.
- W2963938442 cites W2963344337 @default.
- W2963938442 cites W2963595025 @default.
- W2963938442 cites W2963748441 @default.
- W2963938442 cites W2963826681 @default.
- W2963938442 cites W2963871484 @default.
- W2963938442 cites W2964049455 @default.
- W2963938442 cites W2964165364 @default.
- W2963938442 cites W2964185324 @default.
- W2963938442 cites W830076066 @default.
- W2963938442 doi "https://doi.org/10.18653/v1/p17-1096" @default.
- W2963938442 hasPublicationYear "2017" @default.
- W2963938442 type Work @default.
- W2963938442 sameAs 2963938442 @default.
- W2963938442 citedByCount "109" @default.
- W2963938442 countsByYear W29639384422017 @default.
- W2963938442 countsByYear W29639384422018 @default.
- W2963938442 countsByYear W29639384422019 @default.
- W2963938442 countsByYear W29639384422020 @default.
- W2963938442 countsByYear W29639384422021 @default.
- W2963938442 countsByYear W29639384422022 @default.
- W2963938442 countsByYear W29639384422023 @default.
- W2963938442 crossrefType "proceedings-article" @default.
- W2963938442 hasAuthorship W2963938442A5037034281 @default.
- W2963938442 hasAuthorship W2963938442A5051617344 @default.
- W2963938442 hasAuthorship W2963938442A5071983998 @default.
- W2963938442 hasAuthorship W2963938442A5085263462 @default.
- W2963938442 hasBestOaLocation W29639384421 @default.
- W2963938442 hasConcept C119857082 @default.
- W2963938442 hasConcept C120665830 @default.
- W2963938442 hasConcept C121332964 @default.
- W2963938442 hasConcept C134306372 @default.
- W2963938442 hasConcept C139807058 @default.
- W2963938442 hasConcept C154945302 @default.
- W2963938442 hasConcept C167966045 @default.
- W2963938442 hasConcept C2776145971 @default.
- W2963938442 hasConcept C2776434776 @default.
- W2963938442 hasConcept C33923547 @default.
- W2963938442 hasConcept C36503486 @default.
- W2963938442 hasConcept C39890363 @default.
- W2963938442 hasConcept C41008148 @default.
- W2963938442 hasConcept C44291984 @default.
- W2963938442 hasConcept C51632099 @default.
- W2963938442 hasConcept C95623464 @default.
- W2963938442 hasConcept C97541855 @default.
- W2963938442 hasConceptScore W2963938442C119857082 @default.
- W2963938442 hasConceptScore W2963938442C120665830 @default.
- W2963938442 hasConceptScore W2963938442C121332964 @default.
- W2963938442 hasConceptScore W2963938442C134306372 @default.
- W2963938442 hasConceptScore W2963938442C139807058 @default.
- W2963938442 hasConceptScore W2963938442C154945302 @default.
- W2963938442 hasConceptScore W2963938442C167966045 @default.
- W2963938442 hasConceptScore W2963938442C2776145971 @default.
- W2963938442 hasConceptScore W2963938442C2776434776 @default.
- W2963938442 hasConceptScore W2963938442C33923547 @default.
- W2963938442 hasConceptScore W2963938442C36503486 @default.
- W2963938442 hasConceptScore W2963938442C39890363 @default.
- W2963938442 hasConceptScore W2963938442C41008148 @default.
- W2963938442 hasConceptScore W2963938442C44291984 @default.
- W2963938442 hasConceptScore W2963938442C51632099 @default.