Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963989892> ?p ?o ?g. }
- W2963989892 endingPage "75" @default.
- W2963989892 startingPage "51" @default.
- W2963989892 abstract "We introduce a model which allows to represent the probabilities associated with an arbitrary measurement situation as it appears in different domains of science–from cognitive science to physics–and use it to explain the emergence of quantum probabilities (the Born rule) as uniform fluctuations on this measurement situation. The model exploits the geometry of simplexes to represent the states both of the system and the measuring apparatus, in a way that the measurement probabilities can be derived as the Lebesgue measure of suitably defined convex subregions of the simplex under consideration. Although the model we propose, which we call the uniform tension-reduction (UTR) model, is an abstract construct, it admits physical realizations. In this article we consider a very simple and evocative one, using a material point particle which is acted upon by special elastic membranes, which by breaking and collapsing are able to “release the tension” and produce the different possible outcomes. This easy to visualize mechanical realization allows one to gain considerable insight into the possible hidden structure of a measurement process, be it from a measurement associated with a situation in cognitive science or in physics, or in any other domain. We also show that the UTR-model can be further generalized into a model describing conditions of lack of knowledge generated by non-uniform fluctuations, which we call the general tension-reduction (GTR) model. In this more general framework, which is more suitable to describe typical experiments in cognitive science, we define and motivate a notion of universal measurement, describing the most general possible condition of lack of knowledge in a measurement, emphasizing that the uniform fluctuations characterizing quantum measurements can also be understood as an average over all possible forms of non-uniform fluctuations which can be actualized in a measurement context. This means that the Born rule of quantum mechanics can be understood as a first order approximation of a more general non-uniform theory, thus explaining part of the great success of quantum probability in the description of different domains of reality. And more specifically, also providing a possible explanation for the success of quantum cognition, a research field in cognitive science employing the quantum formalism as a modeling tool. This is the first part of a two-part article. In the second part (Aerts and Sassoli de Bianchi, 2014a), the proof of the equivalence between universal measurements and uniform measurements, and its significance for quantum theory as a first order approximation, is given and further analyzed." @default.
- W2963989892 created "2019-07-30" @default.
- W2963989892 creator A5025995428 @default.
- W2963989892 creator A5056925696 @default.
- W2963989892 date "2015-08-01" @default.
- W2963989892 modified "2023-10-02" @default.
- W2963989892 title "The unreasonable success of quantum probability I: Quantum measurements as uniform fluctuations" @default.
- W2963989892 cites W1503998661 @default.
- W2963989892 cites W1568957164 @default.
- W2963989892 cites W1766469488 @default.
- W2963989892 cites W1975433492 @default.
- W2963989892 cites W1976105839 @default.
- W2963989892 cites W1984571832 @default.
- W2963989892 cites W1986082169 @default.
- W2963989892 cites W1990224388 @default.
- W2963989892 cites W1998013227 @default.
- W2963989892 cites W2014699409 @default.
- W2963989892 cites W2017585647 @default.
- W2963989892 cites W2023446535 @default.
- W2963989892 cites W2027047704 @default.
- W2963989892 cites W2031845357 @default.
- W2963989892 cites W2032063524 @default.
- W2963989892 cites W2040186805 @default.
- W2963989892 cites W2042690899 @default.
- W2963989892 cites W2047635856 @default.
- W2963989892 cites W2050435563 @default.
- W2963989892 cites W2050776567 @default.
- W2963989892 cites W2058496148 @default.
- W2963989892 cites W2064924638 @default.
- W2963989892 cites W2067555614 @default.
- W2963989892 cites W2088669196 @default.
- W2963989892 cites W2105232709 @default.
- W2963989892 cites W2121394364 @default.
- W2963989892 cites W2143331952 @default.
- W2963989892 cites W2144336657 @default.
- W2963989892 cites W2147986396 @default.
- W2963989892 cites W2162829624 @default.
- W2963989892 cites W2164029840 @default.
- W2963989892 cites W2276082831 @default.
- W2963989892 cites W2333311386 @default.
- W2963989892 cites W2962884180 @default.
- W2963989892 cites W2962993816 @default.
- W2963989892 cites W2964046000 @default.
- W2963989892 cites W3098513350 @default.
- W2963989892 cites W3099441963 @default.
- W2963989892 cites W3100944708 @default.
- W2963989892 cites W3103272391 @default.
- W2963989892 cites W3121226191 @default.
- W2963989892 cites W3126996113 @default.
- W2963989892 cites W4297432926 @default.
- W2963989892 cites W66096694 @default.
- W2963989892 doi "https://doi.org/10.1016/j.jmp.2015.01.003" @default.
- W2963989892 hasPublicationYear "2015" @default.
- W2963989892 type Work @default.
- W2963989892 sameAs 2963989892 @default.
- W2963989892 citedByCount "22" @default.
- W2963989892 countsByYear W29639898922014 @default.
- W2963989892 countsByYear W29639898922015 @default.
- W2963989892 countsByYear W29639898922016 @default.
- W2963989892 countsByYear W29639898922017 @default.
- W2963989892 countsByYear W29639898922018 @default.
- W2963989892 countsByYear W29639898922019 @default.
- W2963989892 countsByYear W29639898922021 @default.
- W2963989892 countsByYear W29639898922022 @default.
- W2963989892 countsByYear W29639898922023 @default.
- W2963989892 crossrefType "journal-article" @default.
- W2963989892 hasAuthorship W2963989892A5025995428 @default.
- W2963989892 hasAuthorship W2963989892A5056925696 @default.
- W2963989892 hasBestOaLocation W29639898921 @default.
- W2963989892 hasConcept C105795698 @default.
- W2963989892 hasConcept C111472728 @default.
- W2963989892 hasConcept C116672817 @default.
- W2963989892 hasConcept C118615104 @default.
- W2963989892 hasConcept C121332964 @default.
- W2963989892 hasConcept C121864883 @default.
- W2963989892 hasConcept C138885662 @default.
- W2963989892 hasConcept C14158598 @default.
- W2963989892 hasConcept C2524010 @default.
- W2963989892 hasConcept C2777105136 @default.
- W2963989892 hasConcept C2780009758 @default.
- W2963989892 hasConcept C2780586882 @default.
- W2963989892 hasConcept C2781089630 @default.
- W2963989892 hasConcept C33923547 @default.
- W2963989892 hasConcept C41008148 @default.
- W2963989892 hasConcept C62438384 @default.
- W2963989892 hasConcept C62520636 @default.
- W2963989892 hasConcept C77088390 @default.
- W2963989892 hasConcept C84114770 @default.
- W2963989892 hasConceptScore W2963989892C105795698 @default.
- W2963989892 hasConceptScore W2963989892C111472728 @default.
- W2963989892 hasConceptScore W2963989892C116672817 @default.
- W2963989892 hasConceptScore W2963989892C118615104 @default.
- W2963989892 hasConceptScore W2963989892C121332964 @default.
- W2963989892 hasConceptScore W2963989892C121864883 @default.
- W2963989892 hasConceptScore W2963989892C138885662 @default.
- W2963989892 hasConceptScore W2963989892C14158598 @default.
- W2963989892 hasConceptScore W2963989892C2524010 @default.
- W2963989892 hasConceptScore W2963989892C2777105136 @default.