Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964010127> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2964010127 abstract "A 1-factorization of a graph G is a collection of edge-disjoint perfect matchings whose union is E(G). A trivial necessary condition for G to admit a 1-factorization is that |V (G)| is even and G is regular; the converse is easily seen to be false. In this paper, we consider the problem of finding 1-factorizations of regular, pseudorandom graphs. Specifically, we prove that for any ϵ > 0, an (n, d, λ)-graph G (that is, a d-regular graph on n vertices whose second largest eigenvalue in absolute value is at most λ) admits a 1-factorization provided that n is even, C <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> ≤ d ≤ n-1 (where C <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> = C <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> (∈) is a constant depending only on ∈), and λ ≤ d <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1-∈</sup> . In particular, since (as is well known) a typical random d-regular graph G <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n,d</sub> is such a graph, we obtain the existence of a 1-factorization in a typical G <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n,d</sub> for all C <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> ≤ d ≤ n - 1, thereby extending to all possible values of d results obtained by Janson, and independently by Molloy, Robalewska, Robinson, and Wormald for fixed d. Moreover, we also obtain a lower bound for the number of distinct 1-factorizations of such graphs G which is off by a factor of 2 in the base of the exponent from the known upper bound. This lower bound is better by a factor of 2 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>nd/2</sup> than the previously best known lower bounds, even in the simplest case where G is the complete graph. Our proofs are probabilistic and can be easily turned into polynomial time (randomized) algorithms." @default.
- W2964010127 created "2019-07-30" @default.
- W2964010127 creator A5017261510 @default.
- W2964010127 creator A5055049769 @default.
- W2964010127 date "2018-10-01" @default.
- W2964010127 modified "2023-10-14" @default.
- W2964010127 title "1-Factorizations of Pseudorandom Graphs" @default.
- W2964010127 cites W1479863711 @default.
- W2964010127 cites W1493850023 @default.
- W2964010127 cites W1532129519 @default.
- W2964010127 cites W1592213313 @default.
- W2964010127 cites W1639593279 @default.
- W2964010127 cites W1798337851 @default.
- W2964010127 cites W1966769222 @default.
- W2964010127 cites W1986224428 @default.
- W2964010127 cites W1999344551 @default.
- W2964010127 cites W2006912660 @default.
- W2964010127 cites W2012902191 @default.
- W2964010127 cites W2015236004 @default.
- W2964010127 cites W2018047324 @default.
- W2964010127 cites W2030820640 @default.
- W2964010127 cites W2032146159 @default.
- W2964010127 cites W2036729411 @default.
- W2964010127 cites W2037114373 @default.
- W2964010127 cites W2047902293 @default.
- W2964010127 cites W2053929306 @default.
- W2964010127 cites W2068871408 @default.
- W2964010127 cites W2087014485 @default.
- W2964010127 cites W2089222503 @default.
- W2964010127 cites W2102669784 @default.
- W2964010127 cites W2103012681 @default.
- W2964010127 cites W2149102431 @default.
- W2964010127 cites W2153988305 @default.
- W2964010127 cites W2155618818 @default.
- W2964010127 cites W2161611531 @default.
- W2964010127 cites W2335389215 @default.
- W2964010127 cites W2592640058 @default.
- W2964010127 cites W2794887178 @default.
- W2964010127 cites W2905110430 @default.
- W2964010127 cites W399101440 @default.
- W2964010127 doi "https://doi.org/10.1109/focs.2018.00072" @default.
- W2964010127 hasPublicationYear "2018" @default.
- W2964010127 type Work @default.
- W2964010127 sameAs 2964010127 @default.
- W2964010127 citedByCount "2" @default.
- W2964010127 countsByYear W29640101272020 @default.
- W2964010127 countsByYear W29640101272022 @default.
- W2964010127 crossrefType "proceedings-article" @default.
- W2964010127 hasAuthorship W2964010127A5017261510 @default.
- W2964010127 hasAuthorship W2964010127A5055049769 @default.
- W2964010127 hasBestOaLocation W29640101272 @default.
- W2964010127 hasConcept C11413529 @default.
- W2964010127 hasConcept C114614502 @default.
- W2964010127 hasConcept C118615104 @default.
- W2964010127 hasConcept C132525143 @default.
- W2964010127 hasConcept C187834632 @default.
- W2964010127 hasConcept C33923547 @default.
- W2964010127 hasConcept C41008148 @default.
- W2964010127 hasConcept C45340560 @default.
- W2964010127 hasConceptScore W2964010127C11413529 @default.
- W2964010127 hasConceptScore W2964010127C114614502 @default.
- W2964010127 hasConceptScore W2964010127C118615104 @default.
- W2964010127 hasConceptScore W2964010127C132525143 @default.
- W2964010127 hasConceptScore W2964010127C187834632 @default.
- W2964010127 hasConceptScore W2964010127C33923547 @default.
- W2964010127 hasConceptScore W2964010127C41008148 @default.
- W2964010127 hasConceptScore W2964010127C45340560 @default.
- W2964010127 hasLocation W29640101271 @default.
- W2964010127 hasLocation W29640101272 @default.
- W2964010127 hasLocation W29640101273 @default.
- W2964010127 hasOpenAccess W2964010127 @default.
- W2964010127 hasPrimaryLocation W29640101271 @default.
- W2964010127 hasRelatedWork W2130209831 @default.
- W2964010127 hasRelatedWork W2152478214 @default.
- W2964010127 hasRelatedWork W2171569275 @default.
- W2964010127 hasRelatedWork W2546705119 @default.
- W2964010127 hasRelatedWork W2767587315 @default.
- W2964010127 hasRelatedWork W2950385387 @default.
- W2964010127 hasRelatedWork W2950401181 @default.
- W2964010127 hasRelatedWork W2952110281 @default.
- W2964010127 hasRelatedWork W2963116645 @default.
- W2964010127 hasRelatedWork W2963699585 @default.
- W2964010127 isParatext "false" @default.
- W2964010127 isRetracted "false" @default.
- W2964010127 magId "2964010127" @default.
- W2964010127 workType "article" @default.