Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964028220> ?p ?o ?g. }
- W2964028220 endingPage "116" @default.
- W2964028220 startingPage "92" @default.
- W2964028220 abstract "Nowadays, with the improvement in communication through social network services, a massive amount of data is being generated from user's perceptions, emotions, posts, comments, reactions, etc., and extracting significant information from those massive data, like sentiment, has become one of the complex and convoluted tasks. On other hand, traditional Natural Language Processing (NLP) approaches are less feasible to be applied and therefore, this research work proposes an approach by integrating unsupervised machine learning (Self-Organizing Map), dimensionality reduction (Principal Component Analysis) and computational classification (Adam Deep Learning) to overcome the problem. Moreover, for further clarification, a comparative study between various well known approaches and the proposed approach was conducted. The proposed approach was also used in different sizes of social network data sets to verify its superior efficient and feasibility, mainly in the case of Big Data. Overall, the experiments and their analysis suggest that the proposed approach is very promissing." @default.
- W2964028220 created "2019-07-30" @default.
- W2964028220 creator A5000975435 @default.
- W2964028220 creator A5044430394 @default.
- W2964028220 creator A5046340409 @default.
- W2964028220 creator A5056546246 @default.
- W2964028220 creator A5083496218 @default.
- W2964028220 creator A5090666420 @default.
- W2964028220 date "2019-07-01" @default.
- W2964028220 modified "2023-10-06" @default.
- W2964028220 title "Adam Deep Learning With SOM for Human Sentiment Classification" @default.
- W2964028220 cites W1429921896 @default.
- W2964028220 cites W1970592556 @default.
- W2964028220 cites W1978971895 @default.
- W2964028220 cites W2001614588 @default.
- W2964028220 cites W2025478229 @default.
- W2964028220 cites W2047308542 @default.
- W2964028220 cites W2085256060 @default.
- W2964028220 cites W2513519930 @default.
- W2964028220 cites W2544424178 @default.
- W2964028220 cites W2562781711 @default.
- W2964028220 cites W2563967940 @default.
- W2964028220 cites W2610136582 @default.
- W2964028220 cites W2618530766 @default.
- W2964028220 cites W2625126745 @default.
- W2964028220 cites W2766191760 @default.
- W2964028220 cites W2773200982 @default.
- W2964028220 cites W2786749325 @default.
- W2964028220 cites W2787170817 @default.
- W2964028220 cites W2787465892 @default.
- W2964028220 cites W2787566989 @default.
- W2964028220 cites W2798287406 @default.
- W2964028220 cites W2804384251 @default.
- W2964028220 cites W2809032542 @default.
- W2964028220 cites W2810819381 @default.
- W2964028220 cites W4211083959 @default.
- W2964028220 doi "https://doi.org/10.4018/ijaci.2019070106" @default.
- W2964028220 hasPublicationYear "2019" @default.
- W2964028220 type Work @default.
- W2964028220 sameAs 2964028220 @default.
- W2964028220 citedByCount "60" @default.
- W2964028220 countsByYear W29640282202020 @default.
- W2964028220 countsByYear W29640282202021 @default.
- W2964028220 countsByYear W29640282202022 @default.
- W2964028220 countsByYear W29640282202023 @default.
- W2964028220 crossrefType "journal-article" @default.
- W2964028220 hasAuthorship W2964028220A5000975435 @default.
- W2964028220 hasAuthorship W2964028220A5044430394 @default.
- W2964028220 hasAuthorship W2964028220A5046340409 @default.
- W2964028220 hasAuthorship W2964028220A5056546246 @default.
- W2964028220 hasAuthorship W2964028220A5083496218 @default.
- W2964028220 hasAuthorship W2964028220A5090666420 @default.
- W2964028220 hasBestOaLocation W29640282202 @default.
- W2964028220 hasConcept C108583219 @default.
- W2964028220 hasConcept C111030470 @default.
- W2964028220 hasConcept C119857082 @default.
- W2964028220 hasConcept C124101348 @default.
- W2964028220 hasConcept C154945302 @default.
- W2964028220 hasConcept C169760540 @default.
- W2964028220 hasConcept C26760741 @default.
- W2964028220 hasConcept C27438332 @default.
- W2964028220 hasConcept C41008148 @default.
- W2964028220 hasConcept C66402592 @default.
- W2964028220 hasConcept C70518039 @default.
- W2964028220 hasConcept C75684735 @default.
- W2964028220 hasConcept C8038995 @default.
- W2964028220 hasConcept C86803240 @default.
- W2964028220 hasConceptScore W2964028220C108583219 @default.
- W2964028220 hasConceptScore W2964028220C111030470 @default.
- W2964028220 hasConceptScore W2964028220C119857082 @default.
- W2964028220 hasConceptScore W2964028220C124101348 @default.
- W2964028220 hasConceptScore W2964028220C154945302 @default.
- W2964028220 hasConceptScore W2964028220C169760540 @default.
- W2964028220 hasConceptScore W2964028220C26760741 @default.
- W2964028220 hasConceptScore W2964028220C27438332 @default.
- W2964028220 hasConceptScore W2964028220C41008148 @default.
- W2964028220 hasConceptScore W2964028220C66402592 @default.
- W2964028220 hasConceptScore W2964028220C70518039 @default.
- W2964028220 hasConceptScore W2964028220C75684735 @default.
- W2964028220 hasConceptScore W2964028220C8038995 @default.
- W2964028220 hasConceptScore W2964028220C86803240 @default.
- W2964028220 hasIssue "3" @default.
- W2964028220 hasLocation W29640282201 @default.
- W2964028220 hasLocation W29640282202 @default.
- W2964028220 hasOpenAccess W2964028220 @default.
- W2964028220 hasPrimaryLocation W29640282201 @default.
- W2964028220 hasRelatedWork W1995622179 @default.
- W2964028220 hasRelatedWork W2597787948 @default.
- W2964028220 hasRelatedWork W3014300295 @default.
- W2964028220 hasRelatedWork W3123344745 @default.
- W2964028220 hasRelatedWork W3192794374 @default.
- W2964028220 hasRelatedWork W3208584567 @default.
- W2964028220 hasRelatedWork W4221031031 @default.
- W2964028220 hasRelatedWork W4246751904 @default.
- W2964028220 hasRelatedWork W4302303815 @default.
- W2964028220 hasRelatedWork W4319781722 @default.
- W2964028220 hasVolume "10" @default.
- W2964028220 isParatext "false" @default.