Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964035880> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2964035880 abstract "We prove the convergence of $N$-particle systems of Brownian particles with logarithmic interaction potentials onto a system described by the infinite-dimensional stochastic differential equation (ISDE). For this proof we present two general theorems on the finite-particle approximations of interacting Brownian motions. In the first general theorem, we present a sufficient condition for a kind of tightness of solutions of stochastic differential equations (SDE) describing finite-particle systems, and prove that the limit points solve the corresponding ISDE. This implies, if in addition the limit ISDE enjoy a uniqueness of solutions, then the full sequence converges. We treat non-reversible case in the first main theorem. In the second general theorem, we restrict to the case of reversible particle systems and simplify the sufficient condition. We deduce the second theorem from the first. We apply the second general theorem to $mathrm{Airy}_beta$ interacting Brownian motion with $beta=1, 2, 4$, and the Ginibre interacting Brownian motion. The former appears in the soft-edge limit of Gaussian (orthogonal/unitary/symplectic) ensembles in one spatial dimension, and the latter in the bulk limit of Ginibre ensemble in two spatial dimensions, corresponding to a quantum statistical system for which the eigen-value spectra belong to non-Hermitian Gaussian random matrices. The passage from the finite-particle stochastic differential equation (SDE) to the limit ISDE is a sensitive problem because the logarithmic potentials are long range and unbounded at infinity. Indeed, the limit ISDEs are not easily detectable from those of finite dimensions. Our general theorems can be applied straightforwardly to the grand canonical Gibbs measures with Ruelle-class potentials such as Lennard-Jones 6-12 potentials and and Riesz potentials." @default.
- W2964035880 created "2019-07-30" @default.
- W2964035880 creator A5011247459 @default.
- W2964035880 creator A5017950699 @default.
- W2964035880 date "2018-07-01" @default.
- W2964035880 modified "2023-10-18" @default.
- W2964035880 title "Finite-particle approximations for interacting Brownian particles with logarithmic potentials" @default.
- W2964035880 cites W1503040354 @default.
- W2964035880 cites W1520461790 @default.
- W2964035880 cites W1556432209 @default.
- W2964035880 cites W1973460079 @default.
- W2964035880 cites W1978726108 @default.
- W2964035880 cites W2003175553 @default.
- W2964035880 cites W2007348070 @default.
- W2964035880 cites W2027041965 @default.
- W2964035880 cites W2053281886 @default.
- W2964035880 cites W2057355421 @default.
- W2964035880 cites W2057881547 @default.
- W2964035880 cites W2060490482 @default.
- W2964035880 cites W2071313227 @default.
- W2964035880 cites W2099780989 @default.
- W2964035880 cites W2118351274 @default.
- W2964035880 cites W2332386555 @default.
- W2964035880 cites W2480353178 @default.
- W2964035880 cites W2606061371 @default.
- W2964035880 cites W2962785371 @default.
- W2964035880 cites W3099366678 @default.
- W2964035880 cites W3100051027 @default.
- W2964035880 cites W3100800518 @default.
- W2964035880 cites W3103266854 @default.
- W2964035880 cites W3105669560 @default.
- W2964035880 cites W653925602 @default.
- W2964035880 doi "https://doi.org/10.2969/jmsj/75717571" @default.
- W2964035880 hasPublicationYear "2018" @default.
- W2964035880 type Work @default.
- W2964035880 sameAs 2964035880 @default.
- W2964035880 citedByCount "13" @default.
- W2964035880 countsByYear W29640358802017 @default.
- W2964035880 countsByYear W29640358802019 @default.
- W2964035880 countsByYear W29640358802020 @default.
- W2964035880 countsByYear W29640358802021 @default.
- W2964035880 countsByYear W29640358802022 @default.
- W2964035880 countsByYear W29640358802023 @default.
- W2964035880 crossrefType "journal-article" @default.
- W2964035880 hasAuthorship W2964035880A5011247459 @default.
- W2964035880 hasAuthorship W2964035880A5017950699 @default.
- W2964035880 hasBestOaLocation W29640358801 @default.
- W2964035880 hasConcept C105795698 @default.
- W2964035880 hasConcept C111919701 @default.
- W2964035880 hasConcept C112401455 @default.
- W2964035880 hasConcept C121332964 @default.
- W2964035880 hasConcept C134306372 @default.
- W2964035880 hasConcept C151201525 @default.
- W2964035880 hasConcept C163716315 @default.
- W2964035880 hasConcept C166785042 @default.
- W2964035880 hasConcept C179003449 @default.
- W2964035880 hasConcept C33923547 @default.
- W2964035880 hasConcept C39927690 @default.
- W2964035880 hasConcept C41008148 @default.
- W2964035880 hasConcept C51955184 @default.
- W2964035880 hasConcept C62520636 @default.
- W2964035880 hasConceptScore W2964035880C105795698 @default.
- W2964035880 hasConceptScore W2964035880C111919701 @default.
- W2964035880 hasConceptScore W2964035880C112401455 @default.
- W2964035880 hasConceptScore W2964035880C121332964 @default.
- W2964035880 hasConceptScore W2964035880C134306372 @default.
- W2964035880 hasConceptScore W2964035880C151201525 @default.
- W2964035880 hasConceptScore W2964035880C163716315 @default.
- W2964035880 hasConceptScore W2964035880C166785042 @default.
- W2964035880 hasConceptScore W2964035880C179003449 @default.
- W2964035880 hasConceptScore W2964035880C33923547 @default.
- W2964035880 hasConceptScore W2964035880C39927690 @default.
- W2964035880 hasConceptScore W2964035880C41008148 @default.
- W2964035880 hasConceptScore W2964035880C51955184 @default.
- W2964035880 hasConceptScore W2964035880C62520636 @default.
- W2964035880 hasIssue "3" @default.
- W2964035880 hasLocation W29640358801 @default.
- W2964035880 hasLocation W29640358802 @default.
- W2964035880 hasOpenAccess W2964035880 @default.
- W2964035880 hasPrimaryLocation W29640358801 @default.
- W2964035880 hasRelatedWork W1880146981 @default.
- W2964035880 hasRelatedWork W2000590794 @default.
- W2964035880 hasRelatedWork W2042585404 @default.
- W2964035880 hasRelatedWork W2121756884 @default.
- W2964035880 hasRelatedWork W2372986694 @default.
- W2964035880 hasRelatedWork W2546128363 @default.
- W2964035880 hasRelatedWork W3009576629 @default.
- W2964035880 hasRelatedWork W4289375656 @default.
- W2964035880 hasRelatedWork W4299526956 @default.
- W2964035880 hasRelatedWork W4307626464 @default.
- W2964035880 hasVolume "70" @default.
- W2964035880 isParatext "false" @default.
- W2964035880 isRetracted "false" @default.
- W2964035880 magId "2964035880" @default.
- W2964035880 workType "article" @default.