Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964055783> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2964055783 endingPage "60" @default.
- W2964055783 startingPage "21" @default.
- W2964055783 abstract "This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactional setting, which is a problem of interest in many fields such as bioinformatics, chemoinformatics and social networks. We look at the graph mining problem from a Knowledge Representation point of view, hoping to learn something about support for higher-order logics in declarative languages and solvers. Graph mining is studied as a prototypical problem; it is easily expressible mathematically and exists in many variations. As such, it appears to be a prime candidate for a declarative approach; one would expect this allows for a clear, structured, statement of the problem combined with easy adaptation to changing requirements and variations. Current state-of-the-art KR languages such as IDP and ASP aspire to be practical solvers for such problems (Bruynooghe, Theory Practice Logic Program. (TPLP) 15(6), 783–817 2015). Nevertheless, expressing the graph mining problem in these languages requires unexpectedly complicated and unintuitive encoding techniques. These techniques are in contrast to the ease with which one can transform the mathematical definition of graph mining to a higher-order logic specification, and distract from the problem essentials, complicating possible future adaptation. In this paper, we argue that efforts should be made towards supporting higher-order logic specifications in modern specification languages, without unintuitive and complicated encoding techniques. We argue that this not only makes representation clearer and more susceptible to future adaptation, but might also allow for faster, more competitive solver techniques to be implemented." @default.
- W2964055783 created "2019-07-30" @default.
- W2964055783 creator A5038912625 @default.
- W2964055783 creator A5078864544 @default.
- W2964055783 creator A5084545304 @default.
- W2964055783 creator A5090754913 @default.
- W2964055783 date "2019-03-28" @default.
- W2964055783 modified "2023-10-18" @default.
- W2964055783 title "Knowledge representation analysis of graph mining" @default.
- W2964055783 cites W1544757461 @default.
- W2964055783 cites W1598636176 @default.
- W2964055783 cites W1601683514 @default.
- W2964055783 cites W1633347946 @default.
- W2964055783 cites W1929859906 @default.
- W2964055783 cites W1961824217 @default.
- W2964055783 cites W1979966822 @default.
- W2964055783 cites W1987902506 @default.
- W2964055783 cites W1988703566 @default.
- W2964055783 cites W2031111226 @default.
- W2964055783 cites W2036981717 @default.
- W2964055783 cites W2049334526 @default.
- W2964055783 cites W2069737789 @default.
- W2964055783 cites W2109478775 @default.
- W2964055783 cites W2155378065 @default.
- W2964055783 cites W2160742561 @default.
- W2964055783 cites W2160972885 @default.
- W2964055783 cites W2335800415 @default.
- W2964055783 cites W2512519091 @default.
- W2964055783 cites W2554080479 @default.
- W2964055783 cites W2729610333 @default.
- W2964055783 cites W2887663741 @default.
- W2964055783 cites W3099969598 @default.
- W2964055783 cites W3103711452 @default.
- W2964055783 cites W4211177236 @default.
- W2964055783 cites W4244819751 @default.
- W2964055783 cites W4254354208 @default.
- W2964055783 doi "https://doi.org/10.1007/s10472-019-09624-y" @default.
- W2964055783 hasPublicationYear "2019" @default.
- W2964055783 type Work @default.
- W2964055783 sameAs 2964055783 @default.
- W2964055783 citedByCount "0" @default.
- W2964055783 crossrefType "journal-article" @default.
- W2964055783 hasAuthorship W2964055783A5038912625 @default.
- W2964055783 hasAuthorship W2964055783A5078864544 @default.
- W2964055783 hasAuthorship W2964055783A5084545304 @default.
- W2964055783 hasAuthorship W2964055783A5090754913 @default.
- W2964055783 hasBestOaLocation W29640557832 @default.
- W2964055783 hasConcept C132525143 @default.
- W2964055783 hasConcept C154945302 @default.
- W2964055783 hasConcept C161301231 @default.
- W2964055783 hasConcept C41008148 @default.
- W2964055783 hasConcept C80444323 @default.
- W2964055783 hasConceptScore W2964055783C132525143 @default.
- W2964055783 hasConceptScore W2964055783C154945302 @default.
- W2964055783 hasConceptScore W2964055783C161301231 @default.
- W2964055783 hasConceptScore W2964055783C41008148 @default.
- W2964055783 hasConceptScore W2964055783C80444323 @default.
- W2964055783 hasFunder F4320321730 @default.
- W2964055783 hasIssue "1-3" @default.
- W2964055783 hasLocation W29640557831 @default.
- W2964055783 hasLocation W29640557832 @default.
- W2964055783 hasLocation W29640557833 @default.
- W2964055783 hasOpenAccess W2964055783 @default.
- W2964055783 hasPrimaryLocation W29640557831 @default.
- W2964055783 hasRelatedWork W1898614681 @default.
- W2964055783 hasRelatedWork W2026696399 @default.
- W2964055783 hasRelatedWork W2246353450 @default.
- W2964055783 hasRelatedWork W2293509402 @default.
- W2964055783 hasRelatedWork W2597681995 @default.
- W2964055783 hasRelatedWork W2923818335 @default.
- W2964055783 hasRelatedWork W2988138737 @default.
- W2964055783 hasRelatedWork W4206939502 @default.
- W2964055783 hasRelatedWork W4288083289 @default.
- W2964055783 hasRelatedWork W4309679315 @default.
- W2964055783 hasVolume "86" @default.
- W2964055783 isParatext "false" @default.
- W2964055783 isRetracted "false" @default.
- W2964055783 magId "2964055783" @default.
- W2964055783 workType "article" @default.