Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964057492> ?p ?o ?g. }
- W2964057492 endingPage "3986" @default.
- W2964057492 startingPage "3966" @default.
- W2964057492 abstract "Future cosmological galaxy surveys such as the Large Synoptic Survey Telescope (LSST) will photometrically observe very large numbers of galaxies. Without spectroscopy, the redshifts required for the analysis of these data will need to be inferred using photometric redshift techniques that are scalable to large sample sizes. The high number density of sources will also mean that around half are blended. We present a Bayesian photometric redshift method for blended sources that uses Gaussian mixture models to learn the joint flux-redshift distribution from a set of unblended training galaxies, and Bayesian model comparison to infer the number of galaxies comprising a blended source. The use of Gaussian mixture models renders both of these applications computationally efficient and therefore suitable for upcoming galaxy surveys." @default.
- W2964057492 created "2019-07-30" @default.
- W2964057492 creator A5011882424 @default.
- W2964057492 creator A5040378381 @default.
- W2964057492 date "2019-09-27" @default.
- W2964057492 modified "2023-09-25" @default.
- W2964057492 title "Gaussian mixture models for blended photometric redshifts" @default.
- W2964057492 cites W1974193495 @default.
- W2964057492 cites W1978622282 @default.
- W2964057492 cites W1990119892 @default.
- W2964057492 cites W2015990127 @default.
- W2964057492 cites W2023217969 @default.
- W2964057492 cites W2033909152 @default.
- W2964057492 cites W2066284906 @default.
- W2964057492 cites W2091594642 @default.
- W2964057492 cites W2109510044 @default.
- W2964057492 cites W2111051539 @default.
- W2964057492 cites W2125105520 @default.
- W2964057492 cites W2144224644 @default.
- W2964057492 cites W2145550174 @default.
- W2964057492 cites W2146890784 @default.
- W2964057492 cites W2147526948 @default.
- W2964057492 cites W2163306553 @default.
- W2964057492 cites W2167335950 @default.
- W2964057492 cites W2227274187 @default.
- W2964057492 cites W2265797931 @default.
- W2964057492 cites W2337086579 @default.
- W2964057492 cites W2413988422 @default.
- W2964057492 cites W2464063631 @default.
- W2964057492 cites W2469994677 @default.
- W2964057492 cites W2560068110 @default.
- W2964057492 cites W2623459029 @default.
- W2964057492 cites W2735860321 @default.
- W2964057492 cites W2765730705 @default.
- W2964057492 cites W2767061858 @default.
- W2964057492 cites W2769452099 @default.
- W2964057492 cites W2771955855 @default.
- W2964057492 cites W2772800714 @default.
- W2964057492 cites W2788595045 @default.
- W2964057492 cites W2796135634 @default.
- W2964057492 cites W2810438073 @default.
- W2964057492 cites W2887822807 @default.
- W2964057492 cites W2894705087 @default.
- W2964057492 cites W2896028834 @default.
- W2964057492 cites W2900358442 @default.
- W2964057492 cites W2906110180 @default.
- W2964057492 cites W2906135781 @default.
- W2964057492 cites W306383247 @default.
- W2964057492 cites W3099186397 @default.
- W2964057492 cites W3099582894 @default.
- W2964057492 cites W3100196865 @default.
- W2964057492 cites W3100652938 @default.
- W2964057492 cites W3101238215 @default.
- W2964057492 cites W3101682154 @default.
- W2964057492 cites W3101862440 @default.
- W2964057492 cites W3102014803 @default.
- W2964057492 cites W3102253435 @default.
- W2964057492 cites W3102738652 @default.
- W2964057492 cites W3103221467 @default.
- W2964057492 cites W3103459672 @default.
- W2964057492 cites W3104062568 @default.
- W2964057492 cites W3104101303 @default.
- W2964057492 cites W3104188978 @default.
- W2964057492 cites W3104570363 @default.
- W2964057492 cites W3106318684 @default.
- W2964057492 cites W3123261968 @default.
- W2964057492 cites W4234698323 @default.
- W2964057492 cites W4248681815 @default.
- W2964057492 cites W4254751698 @default.
- W2964057492 cites W804362531 @default.
- W2964057492 doi "https://doi.org/10.1093/mnras/stz2687" @default.
- W2964057492 hasPublicationYear "2019" @default.
- W2964057492 type Work @default.
- W2964057492 sameAs 2964057492 @default.
- W2964057492 citedByCount "3" @default.
- W2964057492 countsByYear W29640574922020 @default.
- W2964057492 countsByYear W29640574922022 @default.
- W2964057492 crossrefType "journal-article" @default.
- W2964057492 hasAuthorship W2964057492A5011882424 @default.
- W2964057492 hasAuthorship W2964057492A5040378381 @default.
- W2964057492 hasBestOaLocation W29640574922 @default.
- W2964057492 hasConcept C121332964 @default.
- W2964057492 hasConcept C1276947 @default.
- W2964057492 hasConcept C154945302 @default.
- W2964057492 hasConcept C163716315 @default.
- W2964057492 hasConcept C177272240 @default.
- W2964057492 hasConcept C2776834974 @default.
- W2964057492 hasConcept C2780974285 @default.
- W2964057492 hasConcept C33024259 @default.
- W2964057492 hasConcept C41008148 @default.
- W2964057492 hasConcept C44870925 @default.
- W2964057492 hasConcept C61224824 @default.
- W2964057492 hasConcept C62520636 @default.
- W2964057492 hasConcept C98444146 @default.
- W2964057492 hasConceptScore W2964057492C121332964 @default.
- W2964057492 hasConceptScore W2964057492C1276947 @default.
- W2964057492 hasConceptScore W2964057492C154945302 @default.
- W2964057492 hasConceptScore W2964057492C163716315 @default.