Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964078312> ?p ?o ?g. }
- W2964078312 endingPage "152" @default.
- W2964078312 startingPage "145" @default.
- W2964078312 abstract "Discriminating between closely-related language varieties is considered a challenging and important task. This paper describes our submission to the DSL 2016 shared-task, which included two sub-tasks: one on discriminating similar languages and one on identifying Arabic dialects. We developed a character-level neural network for this task. Given a sequence of characters, our model embeds each character in vector space, runs the sequence through multiple convolutions with different filter widths, and pools the convolutional representations to obtain a hidden vector representation of the text that is used for predicting the language or dialect. We primarily focused on the Arabic dialect identification task and obtained an F1 score of 0.4834, ranking 6th out of 18 participants. We also analyze errors made by our system on the Arabic data in some detail, and point to challenges such an approach is faced with." @default.
- W2964078312 created "2019-07-30" @default.
- W2964078312 creator A5039081803 @default.
- W2964078312 creator A5051184573 @default.
- W2964078312 date "2016-12-01" @default.
- W2964078312 modified "2023-09-26" @default.
- W2964078312 title "A Character-level Convolutional Neural Network for Distinguishing Similar Languages and Dialects." @default.
- W2964078312 cites W1832693441 @default.
- W2964078312 cites W1938755728 @default.
- W2964078312 cites W2101609803 @default.
- W2964078312 cites W2137498753 @default.
- W2964078312 cites W2156387975 @default.
- W2964078312 cites W2160802179 @default.
- W2964078312 cites W2162019804 @default.
- W2964078312 cites W2250662591 @default.
- W2964078312 cites W2295824561 @default.
- W2964078312 cites W244375653 @default.
- W2964078312 cites W2527936838 @default.
- W2964078312 cites W2553512497 @default.
- W2964078312 cites W2561747913 @default.
- W2964078312 cites W2963012544 @default.
- W2964078312 cites W2963324947 @default.
- W2964078312 cites W2963486098 @default.
- W2964078312 cites W2964121744 @default.
- W2964078312 cites W3088953058 @default.
- W2964078312 hasPublicationYear "2016" @default.
- W2964078312 type Work @default.
- W2964078312 sameAs 2964078312 @default.
- W2964078312 citedByCount "20" @default.
- W2964078312 countsByYear W29640783122016 @default.
- W2964078312 countsByYear W29640783122017 @default.
- W2964078312 countsByYear W29640783122018 @default.
- W2964078312 countsByYear W29640783122019 @default.
- W2964078312 countsByYear W29640783122020 @default.
- W2964078312 crossrefType "proceedings-article" @default.
- W2964078312 hasAuthorship W2964078312A5039081803 @default.
- W2964078312 hasAuthorship W2964078312A5051184573 @default.
- W2964078312 hasConcept C116834253 @default.
- W2964078312 hasConcept C138885662 @default.
- W2964078312 hasConcept C154945302 @default.
- W2964078312 hasConcept C162324750 @default.
- W2964078312 hasConcept C17744445 @default.
- W2964078312 hasConcept C187736073 @default.
- W2964078312 hasConcept C189430467 @default.
- W2964078312 hasConcept C199539241 @default.
- W2964078312 hasConcept C204321447 @default.
- W2964078312 hasConcept C2524010 @default.
- W2964078312 hasConcept C2776359362 @default.
- W2964078312 hasConcept C2778112365 @default.
- W2964078312 hasConcept C2780451532 @default.
- W2964078312 hasConcept C2780861071 @default.
- W2964078312 hasConcept C28490314 @default.
- W2964078312 hasConcept C28719098 @default.
- W2964078312 hasConcept C33923547 @default.
- W2964078312 hasConcept C41008148 @default.
- W2964078312 hasConcept C41895202 @default.
- W2964078312 hasConcept C50644808 @default.
- W2964078312 hasConcept C54355233 @default.
- W2964078312 hasConcept C59822182 @default.
- W2964078312 hasConcept C81363708 @default.
- W2964078312 hasConcept C86803240 @default.
- W2964078312 hasConcept C94625758 @default.
- W2964078312 hasConcept C96455323 @default.
- W2964078312 hasConceptScore W2964078312C116834253 @default.
- W2964078312 hasConceptScore W2964078312C138885662 @default.
- W2964078312 hasConceptScore W2964078312C154945302 @default.
- W2964078312 hasConceptScore W2964078312C162324750 @default.
- W2964078312 hasConceptScore W2964078312C17744445 @default.
- W2964078312 hasConceptScore W2964078312C187736073 @default.
- W2964078312 hasConceptScore W2964078312C189430467 @default.
- W2964078312 hasConceptScore W2964078312C199539241 @default.
- W2964078312 hasConceptScore W2964078312C204321447 @default.
- W2964078312 hasConceptScore W2964078312C2524010 @default.
- W2964078312 hasConceptScore W2964078312C2776359362 @default.
- W2964078312 hasConceptScore W2964078312C2778112365 @default.
- W2964078312 hasConceptScore W2964078312C2780451532 @default.
- W2964078312 hasConceptScore W2964078312C2780861071 @default.
- W2964078312 hasConceptScore W2964078312C28490314 @default.
- W2964078312 hasConceptScore W2964078312C28719098 @default.
- W2964078312 hasConceptScore W2964078312C33923547 @default.
- W2964078312 hasConceptScore W2964078312C41008148 @default.
- W2964078312 hasConceptScore W2964078312C41895202 @default.
- W2964078312 hasConceptScore W2964078312C50644808 @default.
- W2964078312 hasConceptScore W2964078312C54355233 @default.
- W2964078312 hasConceptScore W2964078312C59822182 @default.
- W2964078312 hasConceptScore W2964078312C81363708 @default.
- W2964078312 hasConceptScore W2964078312C86803240 @default.
- W2964078312 hasConceptScore W2964078312C94625758 @default.
- W2964078312 hasConceptScore W2964078312C96455323 @default.
- W2964078312 hasLocation W29640783121 @default.
- W2964078312 hasOpenAccess W2964078312 @default.
- W2964078312 hasPrimaryLocation W29640783121 @default.
- W2964078312 hasRelatedWork W1832693441 @default.
- W2964078312 hasRelatedWork W1938755728 @default.
- W2964078312 hasRelatedWork W2101609803 @default.
- W2964078312 hasRelatedWork W2109704865 @default.
- W2964078312 hasRelatedWork W2115295410 @default.
- W2964078312 hasRelatedWork W2123777430 @default.