Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964096186> ?p ?o ?g. }
- W2964096186 endingPage "1014" @default.
- W2964096186 startingPage "1005" @default.
- W2964096186 abstract "Bayesian optimization is a powerful global optimization technique for expensive black-box functions. One of its shortcomings is that it requires auxiliary optimization of an acquisition function at each iteration. This auxiliary optimization can be costly and very hard to carry out in practice. Moreover, it creates serious theoretical concerns, as most of the convergence results assume that the exact optimum of the acquisition function can be found. In this paper, we introduce a new technique for efficient global optimization that combines Gaussian process confidence bounds and treed simultaneous optimistic optimization to eliminate the need for auxiliary optimization of acquisition functions. The experiments with global optimization benchmarks and a novel application to automatic information extraction demonstrate that the resulting technique is more efficient than the two approaches from which it draws inspiration. Unlike most theoretical analyses of Bayesian optimization with Gaussian processes, our finite-time convergence rate proofs do not require exact optimization of an acquisition function. That is, our approach eliminates the unsatisfactory assumption that a difficult, potentially NP-hard, problem has to be solved in order to obtain vanishing regret rates." @default.
- W2964096186 created "2019-07-30" @default.
- W2964096186 creator A5003298204 @default.
- W2964096186 creator A5036420169 @default.
- W2964096186 creator A5064627383 @default.
- W2964096186 creator A5082304130 @default.
- W2964096186 date "2014-04-02" @default.
- W2964096186 modified "2023-09-23" @default.
- W2964096186 title "{Bayesian Multi-Scale Optimistic Optimization}" @default.
- W2964096186 cites W1618543586 @default.
- W2964096186 cites W1625390266 @default.
- W2964096186 cites W1693986406 @default.
- W2964096186 cites W1746819321 @default.
- W2964096186 cites W1794206249 @default.
- W2964096186 cites W1871676304 @default.
- W2964096186 cites W1976355201 @default.
- W2964096186 cites W1988059434 @default.
- W2964096186 cites W2021601290 @default.
- W2964096186 cites W2073107347 @default.
- W2964096186 cites W2078011655 @default.
- W2964096186 cites W2096678000 @default.
- W2964096186 cites W2099201756 @default.
- W2964096186 cites W2105066050 @default.
- W2964096186 cites W2106411961 @default.
- W2964096186 cites W2110582581 @default.
- W2964096186 cites W2112036188 @default.
- W2964096186 cites W2113741278 @default.
- W2964096186 cites W2121658992 @default.
- W2964096186 cites W2125291716 @default.
- W2964096186 cites W2131241448 @default.
- W2964096186 cites W2139929624 @default.
- W2964096186 cites W2145237058 @default.
- W2964096186 cites W2151238122 @default.
- W2964096186 cites W2158319693 @default.
- W2964096186 cites W2161735965 @default.
- W2964096186 cites W2163107094 @default.
- W2964096186 cites W2166253248 @default.
- W2964096186 cites W2168464387 @default.
- W2964096186 cites W2169003314 @default.
- W2964096186 cites W2545991974 @default.
- W2964096186 cites W2951665052 @default.
- W2964096186 cites W2953083211 @default.
- W2964096186 cites W2963110737 @default.
- W2964096186 cites W2963911891 @default.
- W2964096186 cites W2964172739 @default.
- W2964096186 cites W57706852 @default.
- W2964096186 cites W60686164 @default.
- W2964096186 cites W84569508 @default.
- W2964096186 hasPublicationYear "2014" @default.
- W2964096186 type Work @default.
- W2964096186 sameAs 2964096186 @default.
- W2964096186 citedByCount "19" @default.
- W2964096186 countsByYear W29640961862015 @default.
- W2964096186 countsByYear W29640961862016 @default.
- W2964096186 countsByYear W29640961862017 @default.
- W2964096186 countsByYear W29640961862018 @default.
- W2964096186 countsByYear W29640961862019 @default.
- W2964096186 countsByYear W29640961862020 @default.
- W2964096186 countsByYear W29640961862021 @default.
- W2964096186 crossrefType "proceedings-article" @default.
- W2964096186 hasAuthorship W2964096186A5003298204 @default.
- W2964096186 hasAuthorship W2964096186A5036420169 @default.
- W2964096186 hasAuthorship W2964096186A5064627383 @default.
- W2964096186 hasAuthorship W2964096186A5082304130 @default.
- W2964096186 hasConcept C107673813 @default.
- W2964096186 hasConcept C109578324 @default.
- W2964096186 hasConcept C11413529 @default.
- W2964096186 hasConcept C119857082 @default.
- W2964096186 hasConcept C121332964 @default.
- W2964096186 hasConcept C122357587 @default.
- W2964096186 hasConcept C126255220 @default.
- W2964096186 hasConcept C137836250 @default.
- W2964096186 hasConcept C14036430 @default.
- W2964096186 hasConcept C150185637 @default.
- W2964096186 hasConcept C154945302 @default.
- W2964096186 hasConcept C162324750 @default.
- W2964096186 hasConcept C163716315 @default.
- W2964096186 hasConcept C164752517 @default.
- W2964096186 hasConcept C2777303404 @default.
- W2964096186 hasConcept C2778049539 @default.
- W2964096186 hasConcept C29282572 @default.
- W2964096186 hasConcept C33923547 @default.
- W2964096186 hasConcept C41008148 @default.
- W2964096186 hasConcept C50522688 @default.
- W2964096186 hasConcept C50817715 @default.
- W2964096186 hasConcept C61326573 @default.
- W2964096186 hasConcept C62520636 @default.
- W2964096186 hasConcept C78458016 @default.
- W2964096186 hasConcept C86803240 @default.
- W2964096186 hasConcept C92995354 @default.
- W2964096186 hasConceptScore W2964096186C107673813 @default.
- W2964096186 hasConceptScore W2964096186C109578324 @default.
- W2964096186 hasConceptScore W2964096186C11413529 @default.
- W2964096186 hasConceptScore W2964096186C119857082 @default.
- W2964096186 hasConceptScore W2964096186C121332964 @default.
- W2964096186 hasConceptScore W2964096186C122357587 @default.
- W2964096186 hasConceptScore W2964096186C126255220 @default.
- W2964096186 hasConceptScore W2964096186C137836250 @default.